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Abstract —This paper addresses the problem of anisotropy in substrate

materials for microwave integrated-circuit applications. It is shown that in

modeling the circuit characteristics, a serious error is incurred which

becomes larger with increasing frequency when the substrate anisotropy is

neglected. Quasi-static, dynamic, and empirical methods employed to ob-

tain the propagation characteristics of microstrip, coplanar wavegnides, and

slotlines on anisotropic substrates are presented. Numerical solutions such

as the method of moments and the transmission-line matrix technique are

outlined. The modified Wiener-Hopf, the Fourier series techniques, and

the method of lines are also discussed. A critique of the aforementioned

methods and suggestions for future research directions are presented. The

paper includes new results as well as a review of established methods.

I. INTRODUCTION

M ANY MATERIALS used as substrates for inte-

grated microwave circuits or printed-circuit anten-

nas exhibit dielectric anisotropy which either occurs

naturally in the material or is introduced during the

manufacturing process. The development of accurate meth-

ods and optimization techniques for the design of in-

tegrated microwave circuits requires a precise knowledge of

the substrate material dielectric constant. It is well recog-

nized that variations in the value of the substrate material

relative dielectric constant, as well as possible variations in

the value of c for different material batches, introduce

errors in integrated-circuit design and reduce integrated-

circuit repeatability. For these reasons and because in

certain applications anisotropy serves to improve circuit

performance, it must be fully and accurately accounted for.

The plurality of substrate materials used for microwave

integrated circuits belong to the alumina family. Permittiv-

it y variations occurring from batch to batch necessitate

repeated measurements for the accurate determination of

the dielectric constant [1]; in addition, these materials are

slightly anisotropic [2]. Teflon-type substrates are usually

ceramic-impregnated, which introduces anisotropic behav-

ior. It is known, e.g., thht the E-10 ceramic-impregnated

teflon (commonly known as Epsilam 10) is anisotropic with

a relative dielectric constant ~YY=10.3 perpendicular and

Cxx = ~zz = 13.0 parallel to the substrate plane. Similar ani-
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sotropies are exhibited by a variety of other teflon sub-

strates such as the TFE/glass cloth and loaded TFE/glass

cloth [3].

Among the crystalline substrates, single-crystal sappKlre

(Cxx = 6=== 9.4, 6YY=11.6) has attracted considerable at-

tention [4], [5]. Sapphire exhibits several very desirable

properties in that it is optically transparent, it is compati-

ble with high-resistivity silicon, its electrical properties are

reproducible from batch to batch, and it exhibits a 30

percent higher thermal conductivity than alumina [2]. On

the other hand, it is produced in rather small area samples

(about 22 mm square) and it is quite expensive. Pyrolitic

boron nitride is another anisotropic material suggested for

potential use as a substrate for microwave applications [6],

[7]. Boron nitride exhibits anisotropy with CXX= [Z= = 5.12

and CYY= 3.4.

There are applications where magnetic anisotropy is

employed (as in nonreciprocal devices). For such applica-

tions, magnetized ferrite materials are used whose magnetic

properties are depicted by a second-rank tensor permeabil-

ity ~. The elements of ~ are related to the externally

applied dc magnetic field, microwave frequency, as well as

the inherent physical properties of the ferrite material [8].

Recently, microstrip [9], [10] and finline [11] have been

analyzed on ferrite substrate layers.

The basic interaction of electromagnetic waves with an-

isotropic materials is well understood. Extensive results

exist in the literature for plane-wave propagation through

anisotropic materials as well as for guided waves in wave-

guides loaded with gyrotropic slabs [15]–[26]. As far as the

determination of the characteristics of integrated micro-

wave circuits on anisotropic substrates is concerned, how-

ever, the existing publications relate mostly to microstrip

structures, with a few publications on the analysis of

coupled slot; and slotlines.

The intent of this paper is to present existing empirical,

quasi-static, and dynamic solution methods for the deriva-

tion of the propagation characteristics for a variety of

structures such as microstrip, coplanar waveguides, and

slotlines. Among the quasistatic approaches, the finite dif-

ferences method [4], [5], the method of moments [27] -[1?3],

and the variational principle [34]–[43] are emphasized. The

transmission-line matrix method [44]–[49], the Fourier

spectrum approach [51]–[56], and the method of lines [10]

constitute the dynamic solution techniques presented in
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this paper. Empirical methods are discussed, a critique of

the accuracy and applicability of each approach is given, +
and finally, future research directions are suggested.

&;P m;
II. GENERAL BACKGROUND ON ANISOTROPIC (a)

SUBSTRATES
(b) (c)

Q
Dielectric substrate materials are either naturally (e.g., $ $ t

crystalline materials) or artificially anisotropic (as a result

of the manner under which they are manufactured). In

either case, the perrnittivity of these materials is a second-
,*IA*+:=,

—.

rank tensor or dyadic, and it is expressed as

For lossless crystals, ~ is symmetric (i.e., Cf, = ~,,). For this

case, Z can always be transformed into a dlagonalized form

where the diagonal elements cl, c~, c~ are the eigenvalues of

~ and their directions constitute the principal dielectric

axes of the crystal. Furthermore, ~ is positive definite, and

guarantees that the inverse i-1 exists. In general, the

values of cl, c~, c~ are distinct, in which case the crystal is

called biaxial [57]. Most of the crystalline substrates con-

sidered in this paper are characterized by a single axis of

symmetry (optic axis) or ecpivalently by a diagonal tensor

with two equal elements. These crystals are defined as

uniaxial. With reference to the geometries shown in Fig. 1,

the most general dyadic form of ~ considered in this paper

will be

I
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integrated-circuit structures on anisotropic
substrates.
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tensor conductivity will also be allowed, that is,

The dyadic elements CX. and c~X may represent misalign-

ment of the substrate coordinate system with respect to

that of the integrated circuit.

As far as magnetic substrates are concerned, the permea-

bility tensor may take the form

[

P.. P.>

F = Pyx P)IJJ

00

when an external dc magnetic

2-direction, or the form

[

v.. o
p= ()

l+,.,

P.. o

Maxwell’s
o

)

alized form;

o (4)

P,,

field is applied in the

P Xz

o
1

(5)

H
Crxx 00

~= ()
‘YY

0. (6)

o 0 0,=

equations will be considered in their gener-

thus, the system of equations to be solved is

Vxqr,t)=-y(r,t)

v xH(r, t)= J+ +&t)

(7)

(8)

v.B =() (9)

V.D=P (lo)

P,. ) with the constitutive equations

when the external dc magnetic field is applied in the

}--tion. It is the latter case which will be referred to in
D(r, t)=co:.E(r, t) (11)

this paper. In the analytical development which follows, a B(r, t)=po~.H(r, t) (12)
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and

.l(r,t)=;.lz(r,l). (13)

With the aid of these relations, Maxwell’s equations can be

written in the rectangular coordinate system as

8EX dEZ aHy

— = – PoPyy~az – ax
(15)

and

aHz aHy

(

aEx ● ~ aq
— = UXXEX+CO cxx—

ay az at )x,-z (17)

aHx aH

[

aEx aJq
——2=oYYEY+c0 c

az ax
—+C —

YX at YY at
)

(18)

aH, all aEz

ax
— —< = OZZEZ+toczz—

ay at -
(19)

This system of equations encompasses all the cases to be

treated in this paper, and solutions to this system will be

provided for particular quasi-static as well as time- and

frequency-domain cases. Propagation will be assumed in

the z-direction. In the frequency domain, a harmonic time

dependence will be considered of the form e ‘J”’, This

implies that i?/ dz - – y, where y is the propagation con-

stant (y = j~ for lossless materials) and d/at + ja. For

the time-harmonic solutions, the field vectors will be de-

noted by capital letters as, e.g., A (r, t)= A(r)eJ*t.

III. ANISOTROPIC MATERIALS IN

INTEGRATED-CIRCUIT APPLICATIONS

The development of sophisticated analytical methods for

the design of microwave integrated circuits on substrates

with anisotropy is meaningful only to the extent that the

physical parameters describing the anisotropy (;, ~, or =)

can be accurately determined. For uniaxial crystals, c,, = CYY

is defined as the relative permittivity parallel and c ~ = CXX
. c,Z as the component perpendicular to the crystal optic

axis.

Among the crystalline substrate materials, sapphire has

been measured at low [58], microwave [59], [60], infrared

[61], and optical frequencies [62]. At 1 KHz, the relative

permittivity values were determined as c. = 9.395+0.005

and t,, =11.589 +0.005, while at 3 GHz as c * = 9.39 and

([, = 11.584 [59]. More recent results on sapphire in the

microwave frequency range of 2–12 GHz indicate c ~ = 9.34

and c,, =11 .49 with +0.5-percent error [60]. In this case,

the measurements were performed on completely and par-

tially metallized sapphire substrates cut with the optic axis
either parallel or perpendicular to the substrate surface.

The formula

CYY = ()& ‘(n’+nz’) (20)
n,

is used for the computation of c normal to the broad walls

of the cavity, where 1 is the length of each side of a square

substrate sample, and fn,~ the measured resoriant

frequency of the h, tnth node. It is estimated that, with this

type of procedure, the measured resonant frequency is

lower than the actual one by the fraction Af/f = l/2Q,

where Q is the loaded quality factor of the resonator [12].

This indicates that due to radiation loss at the open ends of

the cavity, the method predicts a permittivity CYY higher

than the actual value by the factor A( /cYy = 2( A f/f ) =

l/Q. The Q measurements for the (n, O) mode yield Q >

200, and therefore the correction to the measured permit-

tivity, due to radiation losses from the cavity, is much ,

smrdler than 1 percent. When a completely metallized

cavity is used, the measurements produce (due to coupling
errors) higher = than the actual value. Correct estimates of ,

these types of error are not available, but it is suggested

that Cll= 9.40 + 0.01 and cl, = 11.6+0.01 should be consid-

ered as the typical sapphire substrate relative permittivity

values for this frequency range [2]. The +0.01 error range

is recommended by both the low-frequency measurements

[58] as well as those in the infrared [61] (the latter have

shown less than 0.1 -percent bulk material dispersion below

300 GHz).

Single-crystal a-quartz is also a useful substrate for both

microwave and millimeter-wave applications, with the per-

mittivit y tensor elements having been measured as c,, =

4.6368 f 0.001 and t ~ = 4.5208 t 0.001 at 1 KHz [58]. Dlata

extrapolated to zero frequency from measurements in the

far-infrared yield cl, = 4.635+0.004 [61], cl, = 4.693&0.004

[62], and cl, = 4.635+0.01 [63]. On the other hand, c ~ has

been measured as c ~ = 4.436+0.004 [61], c. = 4.46&0.004

[62], and c * = 4.418+0.01 [63], indicating a discrepancy of

the latter two measurements from the data obtained in [61]

and [63]. Typically, quoted values for c,, and c ~ are 4.6

and 4.5, respectively [58].

With the exception of crystalline substrates such as

sapphire and quartz, the bulk of materials used as sub-

. strates for microwave integrated-circuit applications and

which exhibit varying degrees of anisotropy are the soft,

high-permittivity substrates such as 3M’s Epsilam 10@ (E-

10), Roger’s RT/Duroid@ 6010, and Keene Corporation’s

Dieclad@ 810. As an example, consideration is given to

Epsilam-10, which is a ceramic-impregnated teflon material

(low-loss PTFE- (Polytetrafluoroethylene) based substrate).

As in all cases where impregnant (fill) materials are intro-

duced so as to obtain substrate dimensional stability, a

varying degree of dielectric anisotropy is generated. The

permittivity tensor elements of E-10 have the values CYY=

10.2 and CXX= c,= = 13.0. The larger permittivity occurs in

the xz-plane due to the shear introduced in that pli~ne

during processing. The anisotropy of impregnated PTFE

materials can be measured by the plated disk test [64] to
determine CYYand by the TEIII cavity test [3] (estimated

accuracy of this method is 0.1 –0.2 percent) for the c,X and

c,= elements. A list of data from such measurements is

shown in Table I for PTFE materials.

Substrate materials such as woven glass PTFE laminates

consist of glass fibers oriented along planes parallel to the
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TABLE I
DIELECTRIC ANISOTROPYFORPTFE SUBSTRATES[3]

Sample
Thickness

Material Description (cm)
CYY fx. ) ~z,

Unfilled 2 Discs 0.522 2.08 2.09
PTFE
PTFE Glass CuClad 217 0.051 2.15 2.34

PTFE Cloth Old CuClad 0.153 2.45 2.89/2,95
2.45

PTFE Cloth New CuClad 0.153 2.43 2.88
2.45

Filled PTFE GL 606 0.153 6.24 6.64/5.56
(Glass
Cloth)

(5880)
RTlcluroid random fiber-PTFE

{=870)
~ l.oo~

2.20 2.30 2.40 2.50 ‘YY

Anisotrwy Ratio VS- Gy~

Fig. 2. Anisotropy Ratio versus c,,. Reprinted by permission from
Rogers Co., TR 2692, July 1981.

xz-plane. These glass fiber planes are interspersed in the

y-direction with the polymer matrix. From an equivalent

network point of view, the substrate appears as a three-

dimensional capacitance network with series connections in

the j-direction and parallel connections in the x, y-direc-

tion. This equivalent representation indicates that CYY< (XX,

c~y < 6=,. If it is desired to minimize anisotropy in com-

posite substrate materials, the obvious solution is to (again

considering the woven glass PTFE as an example) orient

the glass fibers randomly. The effectiveness of this ap-

proach is shown in Fig. 2 where the measured anisotropy

ratio AR = c~X/cYY = ~,, /~ Yy is graphed as a function of
CYY for the woven glass PTFE and RT/Duroid random

fiber PTFE substrates [65]. Clearly there is considerable

reduction in anisotropy when a random rather than an

ordered orientation of the impregnant glass fiber is en-

forced in the PTFE base material. Where anisotropy is not

accounted for analytically, low c composite substrates with

randomly oriented filling to reduce anisotropy should re-
sult in more successful designs for microwave printed-cir-

cuit antennas. On the other hand, high c soft substrate

materials which are useful for microwave integrated cir-

cuits may exhibit considerable anisotropy even for random

orientation of the filling substance. This is readily observed

if a linear, albeit arbitrary, extrapolation of the random

fiber-filled PTFE substrate curve is constructed. Such an

extrapolation indicates, with ~XX= ~zz=16 and cyY = 10, an

anisotrop y ratio of 1.6, which is perhaps high. The example

shows, however, that for high ~ soft substrates which are

impregnated with another material matrix, anisotropy is

not negligible and should be accounted for in the develop-

ment of high-accuracy design procedures.

IV. QUASI-STATIC METHODS

A full-wave analysis of integrated-circuit structures (such

as microstrip) on anisotropic substrates involves the devel-

opment of guided waves in terms of hybrid modes. A much

simpler approach is to consider that the structure supports

a dominant TEM mode, an argument especially valid at

low frequencies. Under the assumption of a dominant

TEM mode, a simplified design procedure evolves in a

rather straightforward manner, since the guided-wave field

components can be derived from the solution to Laplace’s

equation.

The design parameters of the microstrip structures of

Fig. 1 are the characteristic impedance ZO and effective

dielectric constant ceff. These parameters are defined for

nonmagnetic substrates by

1
zo=— and eeff = C,/C~ (21)

c=

where c is the speed of light in vacuum, Ca and C, denote

the capacitance of the strip conductor in the absence and

presence of the substrate, respectively, and c~ff is the

effective dielectric constant of the structure. The compu-

tation of C= or C, is obtained from the definition C,=

Q,/VO (r= a or r = s), where VO is the potential of the

strip with respect to ground. The total charge Q is given as

Q,= f“’jb’) dx’ (22)

where p,(x’) is the unknown charge density on the strip. It

is clear now that the central problem of a quasi-static

method is the determination of p,(x). If P,(X) is known,

then the potential at any point (x, y) is given by

@r(X, y) ‘/w’* ~r(x’)Gr(x– x’, y– ~) dx’ (23)
– w/2

where G,( x – x’, y – y’) is the Green’s function pertinent

to the boundary-value problem. On the conductor strip

(y= H, 1x1<w/2, Ix’1 < w/2), O(X, H) = VOand therefore

~or=jw’2~r(x’)G(x-x’)dx’
– w/2

(1x1 < w/2, IX’[ < w/2). (24)

This is a Fredholm integral equation of the first kind to be

solved for p,(x’). The Green’s function G,(x – x’, y – y’) is

obtained by considering Laplace’s equation for the given

boundary-value problem. In the anisotropic medium,
Laplace’s equation is obtained from v -D= O, D = ~. E,

and E = – v+, in the form

V“[:”vo(x, y)] =0. (25)

Equation (25) can be solved by the finite differences tech-

nique [4], variable substitution [66]–[71], or by Fourier

transform methods [27], [72], [73]. The method is easily

extendable to the characterization of coupled rnicrostrip

lines, as those shown in Fig. 1. This is readily achieved by

composing the solution in terms of even- ( + V(O,VO) and

odd- ( + VO, – V.) mode excitation of the coupled lines (see

Fig. l(f)). Under this scheme, the even- and odd-mode

impedances, and the effective dielectric constants are de-
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fined as

(e)

.—‘{’}=.*““”$;‘2’)
where

~{:}= Q{:}/vo Q {:} =~/2+Wp{:}(xt) dx’. (27)
r r r

s/2 r

{e}In addition, pr . (x’) is obtained by solving the integral

equations

S/2+Wp{:}(x)G#}(x -.x’) dx’ (28)
l=J

s/2 r

where

G)’)(x – x’) =Gr(x–x’)+G,(x +x’+s) (29)

and

G(0)(x– x’) =G,(x–x’) –Gr(x+x’+ S).
r (30)

The even- and odd-mode excitations are equivalent to

erecting magnetic and eleetric walls, respectively, on the

x = O plane. The single-strip case can be obtained from the

even-mode excitation as s/H+ O.

Various quasi-static design procedures have evolved for

the determination of 20 and (eff. These procedures are 1)

finite differences, 2) empirical, 3) method of moments, 4)

coordinate transformation (variable substitution), and 5)

variational methods. Each of these procedures will now be

presented and their advantages as well as limitations dis-

cussed.

A. Finite Differences

The finite differences technique has been employed to

obtain design parameters for microstrip without cover on a

sapphire substrate [4], [5]. The ; is assumed diagonal, and

therefore Laplace’s equation becomes

n+,(x, y) +, &’q5i(x,y) co
c lxx

6’X2
~YY

ay’
(31)

where i =1,2 denotes the region of validity. At the inter-

face between the two layers, the tangential electric field

and its gradient must be continuous and

132C$1(X, H) 82+2(x, H)

axz = ax 2
(32)

is obtained. In addition, the normal D component is

continuous, i.e.,

a~l(x, H) a~2(x, H)
~lyy ay

= 62YY
ay “

(33)

If the grid shown in Fig. 3 is considered, then by the

relaxation method, the potential at A, +1~ can be obtained

in terms of the potentials +,~, @,c, @Z~,and O,~. Now the

finite difference equation can be derived in its general form

851

E

_cxx2 ~yy2
D A B

~xxl %yl
c

f~ ~_____ ——— ——— ——1
I
I

I

I

1 I
I b 4

Fig. 3. Rectangular grid for application of the method of finite
differences.

by eliminating derivatives in the previous equations, i.e.,

*(~2xx + ~kt )(% + %)+ ~2yyfh + %yy%

- (cZ.. + 61.. + Czyy + clyy)+j~ = 0. (34)

There are three regions where this generalized finite dif-

ference equation applies and where it takes distinct forms.

1) Anisotropic Region 1 (O< y < H): In this region, C2YY

= ~lyy> f2xx = CIXX, and (34) becomes

‘Xx(% + %)+ ‘Yy(om + @lc)-2(’xx + ~yy)k = ‘0.

(35)

2) Interface (y= H): Here the top points of the grid are

in air, and therefore ~‘XX = ~Zyy =1. In addition, by writing

~lxx = ~xx, %yy = cyy, +1,4 = $2A = +A> +lB = +2B = ~BY %D

= @2D = @Dj the equation reduces to

-(’+ ,Xx+ 6YY)+A=0. (3’)

3) y > H: The entire grid is in the second region, which

is assumed to be a vacuum, and therefore ~lXX = CIYY= c2XX

= cz~y = 1. The difference equation is simplified now into

+2B + +2C + +2D + +2E “+2A = 0-

The microstrip capacitance may be computed

definition

C,=co Li cEEnds
s

(37)

using the

(38)

where the subscript n denotes the direction normal to the

strip. Thus, under the strip c. = cYp, and in the air regjon

c. =1. The choice of c~ at the strip edges (substrate--air

interface) is dictated by the coefficient of the term o~ + @D

in (36), i.e., c~ = (1 + tXX)/2. In applying the relaxation
method, an overrelaxation factor of a =1.8 has been as-

sumed [4]. The grid is established by choosing the substrate

thickness H = 4N, where N is the number of grid points. A

zero potential boundary is assumed at x = + 1OH( + 40N )

and at y = O and y = 5H(20N ). Using this scheme; the
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capacitance is computed iteratively until the value changes

by less than 0.1 percent. The final asymptotic value of C,m

is subsequently obtained by extrapolation [2], [4].

For w/H > L the asymptotic capacitance value C,~ is

reached quickly, i.e., the finite differences method con-

verges rapidly. When w/H <1, however, the method con-

verges very slowly and it becomes increasingly costly to

determine c,~. The evaluation of c.~ proves more dif-

ficult, even over the range of w/H> 1. An accuracy of 0.5

percent is estimated [4] in computing C,~ when w/H=

0.125 with N =12. With w,[H = 9, the method converges

rapidly but the result is sensitive to box size (the estimated

error for the range is stated to be of the order of 0.5

percent [4]).

This method suffers from sensitive convergence prob-

lems depending on the w/H range and box size. Even

though the method is theoretically extendable to treat

coupled lines, the computer cost to obtain desirable accu-

racy would be prohibitive. In fact, the method was not

found accurate enough to obtain 20 and C,ff [4] by direct

computation of C. and C,. Consequently, an important

equivalent permittivit y E,~~ was defined as that for iso-

tropic substrate perrnittivity, which yields the same 20 and

c.ff [4] as the anisotropic layer. The parameter c,e~ is

computed by using the method of finite differences from

the definition

)(c~m– Cbm
c .

r eq cb+(cc–-tb
Ccm– Cbm 1

(39)

where e~ and ~~ are the isotropic permittivities above and

below the anticipated c,,~ (C~w, Ccm are the asymptotic

capacitance values for the cases corresponding to c~, c .).

The behavior of ~,eq with respect to the linewidth ratio

w/H as obtained by the method of finite differences

through the use of (39) is shown in Fig. 4(a) for a sapphire

substrate [4].

B. Empirical Methods

In order to obtain a design method for microstrip on a

sapphire substrate, it is possible to utilize the results ob-

tained for c,,~ with the method of finite differences and

develop an empirical design approach. To this end, the

empirical formula

1.21
E,eq=12.0– —

1+039104+!312’40)
has been developed [4]. The accuracy of this formula has

been estimated to be +0.5 percent in the range 0.1< w/17

< 10.(), and it may be used with existing methods [74], [75]

for microstrip on isotropic substrates to yield design graphs

for C,eq and 20 as shown irl Fig. 4(b) [4]. The accuracy of

ZO obtained in this manner is reported to be 4 percent for

w/n = 0.1, and it is claimed that it improves to 0.5 percent

when w/lY = 1.0 [4]. These accuracy estimates have been

found actually to be on the conservative side. A quasi-static

method of moments solution indicates that (40) yields a

11.64

11.2
i

11.0

1
10.8 -eI --

// >“
, .W

.4
6“,.

0 Finbte differences

,<-L7

and Interpolation.
10.6

t (Equation 39)

10.4
i --- Empirical Equation 40,

10.2 ~ .,I-l

0.1 1.0 10.0

%eq “’ wIH

(a)

Zo

i

----

0 ~ ~,~

0.1 1.0 10.0

(b)

Fig. 4. (a) C,,q versus w/H. (b) Characteristic impedance Z.
w/H.

versus

better than 0.4-percent accuracy for 0.1 G w/H< 10.0, while

the error in 20 is less than 1 percent for the same range in

w/H. The empirical formula given for c,eq is simple and

useful but it suffers from lack of generality, as it applies

only to sapphire substrates.

C. The Method of Moments

The method of moments [76] has proven to be a very

useful numerical technique in solving a variety of engineer-

ing problems in electromagnetic. It will be adopted here to

obtain the total charge per unit length for a single line, and

the even- and odd-mode total charges for coupled micro-

{’}strip lines. The unknown charge density p, o (x) is ex-

panded into a series of the form

p{:}(x)=‘f Nfn(x)
n

(41)
~=1

where {fn(x)}, n =1,2,3,”” ., N, is a set of known basis

(expansion) functions, and the a. are unknown coeffi-

cients. Substitution of this expansion into (28) yields the

following pair of integral equations for the even- and

j}odd-mode unknown coefficients a ~ :

~= ~ ~{~}~/2+wG~:}(x -x)fn(x,)dx. (42)

~=1 n s/2

At this point, another set of known functions { Wn(x)},
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m=l,2,3,. . . , N, (the testing functions) is selected and the

inner product is formed with both sides of (42), i.e.,

N [e]

~=1

( /s/2+ w
Win(x), ~{:}

(x -X’) fn(x’) dx’
s/2

)

(43)

where the inner product is defined by

(~(x), w(x)) ‘~’2+w$(X)W(X) dx. (44)
s/2

Equation (43) can now be written as

$:}= : Jy:}
m

(45)
~=1

where

l$}=(l,wm(x))
m

(46)

and

(~{%w~(x),~12+WG{:} (x-x)fn(x)dx
inn

s/2
)

(47)

or in matrix form

[AJ=[%nnl[%l. (48)

Upon inversion, the coefficients a. are

[an] =[gmn]-’[&]. (49)

The total line charge per unit length finally takes the form

.,2 jn(X) dx (50)Q{f~= : J:}~/2+”
N=l

{’}and therefore the even- and odd-mode capacitance is C o

= Q{ ~}, since V{ S} = 1. These capacitance values are

{e},, c{$}e,,, andsubsequently employed to determine Z o

u{ ~} ~. The single-line results can be readily obtained by

allowing s/2 + O in the formulation for the even mode.

Recognize that C, for a single strip= 2C, for coupled lines,

ZO for a single strip= ~Z~ for coupled lines, and w/H of a

single strip = ~w/H for coupled lines. A significant feature

of the method is the choice of expansion and testing

functions. These functions are critical both in the complex-

ity of analysis as well as rate of convergence. Often the

choice {w.(x)} = {~.(x)} is made; this selection of testing

and expansion functions is known as the Galerkin method

[76]. For the problem at hand, {~.(x)}= { p.(x)} is cho-

sen where {p.(x)} is a set of pulse functions defined by

( l,xn– A/2cx<xn+A/2
Pn(x)=p. (~–%1)= o,x<xn– A/2, x>xn+A/2

(51)

and A = ( w/H)/N. Furthermore, the testing functions

{ w~(x)} are chosen as w~(x) = 8(x – x~). the point-

matching method, with x~ = A( m – 1/2). N denotes here

853

the number of subsections the metallic strip is divided into.

Finally, the g{~} matrix elements reduce to
mn

g{:}= ~+ A/2&}(x-x$dx.
mn m (52)

xn– A/2

This approach applies to a variety of cases.

1) Microstrip on Anisotropic Substrate with Optic .Axis

Misalignment: It is assumed that the principal axes ((, II) of

the anisotropic substrate form an angle O with respect to

the microstrip coordinate system (x, y) [77] (see Fig. 7).

The elements of the relative permittivity tensor are given in

the microstrip coordinate sy;tem by

exx = c6tcos26’ + cVVsin20

CYY
=c6tsin2$ +cvvsin2i3

c =(~ff-6,,)sin@cos0XY = ~yx

and

f Zz = 6=,.

To proceed with the method of moments,

(53)

the Green’s

function is obtained [27] by solving the boundary-value

problem for the potential functions @l(x, y) and I#12(x,y).

The potentials must satisfy Laplace’s equation and the

pertinent boundary conditions.

In Region 1:

In Region 2:

.(55)

The boundary conditions are

@l(x, o)=o (56)

+2(X, B)= o ‘(57)

+,(x, ~) =42(X, ~) (58)

and

= :8(X – x’) (59)

where PI is the line of charge at x = .x’, y = H, generating

the potentials @l(x, y) and @z(x, y). This problem can be

solved by using a Fourier transform in x and integrating

the resulting ordinary differential equation in y. The trans-

form potential in region 1 is found to be

exp[–j{(y– H)]
~1(~~ y) = ~ {[a8coth(f8H)+coth( tH~)l

. sinh ({i3y) ,(60)

sinh ({8H)

with

,=[~-(5tJ2-r a=cyy and v=; –1. (61)
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After deriving the inverse transforms of & and ~z, the

Green’s function pertinent to the characterization of single

and coupled microstrip is obtained from either @l(x, y) or

%(x, Y) by letting p,= 1 and y = H. The Green’s function
is

(62)

from which G{ S}(x – x’) is obtained by considering (29)

and (30). The elements of tlhe [g~j } ] matrix are derived in

the form

~{:}-+j” ‘in(a[::(’[xm+il)l
mn —

‘CO O (2 [a8coth(~Hr)+coth (vH()]

“[w[xn+ilb’63)
The upper limit of integration in (63) is chosen as {~=

max(A/8, A/v), where A is determined from tanh(A) =

1.0 (for tanh(A) = 0.999, A ❑ = 5). This value of A results in

the negligible error of 0.009 percent. The Green’s function

can also be written in the fo [lowing series form by consid-

ering analytic continuation and the Cauchy residue theo-

rem [28]:

-k5-- exp[ – V[[x – x’1]
G(x – ~’) = EOH /=1 ~,[afi:~csc2 (v[8H)+ vcsc2(v/~~)1

(64)

where v, is the lth root of the transcendental equation

sin[vl(8+ v) H]+ Msin[vl(v-8)H] =0 (65)

with

m? – 1
M=-—

C[d+l”

For this representation, the matrix elements are given by

{;} ~ ~. ‘[ati’(;,c’(v,d;)+ZJcsc’ (I@v)]g ‘n — ●oH[=l vl

x

[

l-exp[-v,$]isinh(~)exp[-v,lxm+x.+.1]

()V[A
sinh ~ exp [ – vllx~ –x.l]+exp[-vllx~ +x. +.s1]

(66)

where the upper form is valid for x~ = x., while the lower

is for x~ # x..

Computations have been carried out for single and cou-

pled microstrip lines with a convergence accuracy better

than 0.5 percent (any desired convergence accuracy is

obtainable by increasing the number of subsections N).

The method of moments has been compared with other

techniques for rnicrostrip on isotropic substrates. The

Bryant and Weiss approach [74] agrees well with the method

of moments (to within 1 percent) except for very small

linewidths where for coupled lines a discrepancy on the

order of 3.5 percent is observed for the odd-mode imped-

ance (w/H = 0.1, s/H= 0.1). It appears that when w/H<

0.2, the accuracy of the Bryant and Weiss results for

coupled lines is somewhat questionable due to a coarse

subdivision of the lines [74]. In addition, the increase in

error for small linewidths may be due to the sensitivity y of

the finite differences method to mesh size.

The Finite Differences–Capacitance Interpolation

(FD-CI) procedure (which includes the incorporation of

the Bryant and Weiss algorithm) has been compared against

the method of moments for a single microstrip line on a

sapphire substrate. The method of moments is used in two

computations whereby in one case the tensor permittivity ~

is involved (MMA), while in the subsequent case ~,e~ is

employed (MMEI). Table II summarizes the results for this

comparison. For the method of moments, the geometry of

Fig. l(b) is considered with B/H= 5.0 and B/H= 20.0.

The case of B/H= 5.0 is chosen since the empirical for-

mula for 6,e~ is derived in [4] for the equivalent box size of

B/H = 5.0. Table II indicates that when B/H= 5.0, the

percent error is considerable when the FD–CI procedure is

compared with the method of moments. On the other

hand, when B/H = 20.0 (essentially an open structure), the

agreement is very good. This may be due to the possible

use in [4] of the Bryant and Weiss algorithm for an open

structure. The method of moments quasi-static results

shown in Table II have also been verified with excellent

agreement by considering the low-frequency limit of a

dynamic, solution [56] for the geometry of Fig. l(c) with the

proper dimensions.

An investigation has also been carried out to determine

the error introduced when the anisotropic nature of a given

substrate is neglected and in addition to clarify the effect

of the anisotropy ratio (AR) on line characteristics.

Table 111 provides a comparison of results for 20 and

ceff versus w/H for an Epsilam-10 substrate with ~XX= c,=

= 13, and CYY= 10.3. As Table 111 indicates, the error

increases for narrow linewidths. This is due to the fact that

the fringing field is not taken into account correctly when

anisotropy is neglected, an ommission which leads to erro-

neous calculation of the guided wavelength, resonant length,

and subsequently inaccurate equivalent-circuit represen-

tations. The method of moments yields a faster conver-

gence in computing c~ff than 2.. For 0.5-percent conver-

gence accuracy, the largest number of subsections needed

for a single line was N= 16.

Table IV provides an understanding of the rate of con-

vergence on the UCLA IBM 3033 computer. The results
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TABLE II
COMPARISONOF FINITE DIFFERENCES(FD-CI) AND THE EMPIRICAL

TECHNIQUE (MMET) WITH THEMETHOD OF
MOMENTS(MMA)

w/fl Z. Z. % Error Z. % Error

0.125 97.095 97.76 0.68 96.982 0,80
97.858 0.1 97.752 0,01

1.0 45.845 46.60 1.62 45.765 1.79
46.569 0.07 46.439 0.35

9.0 9.651 10.17 5.11 9.634 5.27
10.143 0.27 10.126 0.43

w/H ~cff ~cff % Error ~eff % Error

0.125 6.4048 6.522 1.80 6.4197 1.57
6.4924 0.45 6.5065 0.24

1.0 7.1699 7.391 2.99 7.1949 2.65
7.3633 0.37 7.3875 0.05

9.0 8.8135 9.718 9.31 8.8439 8.99
9.5671 1.55 9.5977 1.24

Upper data: B/H = 5.0; lower data: B/H= 20.0.

TABLE III
ERRORIN NEGLECTINGANISOTROPY—SINGLELINE

Z. Z. ‘eff %ff
( =10.3 .s = (,, =13 ‘%Error e = 10.3 ~xx = 6===13 % Error

w/H isotropic 6;= 10.3 in ZO isotropic
~.vY

= 10.3 in Ccff

0.1 105.3763
1.0 48.0923
2.0 32.7080
3.0 25.0139
4.0 20.3157
5.0 17.1296
7.0 13.0643
9.0 10.5852

101.2740
46.9167
32.1597
24.6982
20.1101
16.9846
12.9792
10.5243

3.89 6.1854
2.44 6.8345
1.68 7.2877
1.26 7.6128
1.01 7.8537
0.85 8.0379
0.65 8.2980
0.58 8.4645

6.6967 8.27
7.1813 5.07
7.5384 3.44
7.8086 2.57
8.0151 2.06
8.1758 1.72
8.4073 1.32
8.5628 1.16

All results within 0.5-percent convergence accuracy.

for a case of coupled lines (s/If= 0.1, B/If= 10.0) are

also summarized in, Table V. The subscripts i and a refer
to Epsilam-10 with anisotropy omitted or taken into

account, respectively. It is observed that the error is larger

for the odd-mode characteristic impedance and c.ff than

for the even mode. The discrepancy in c~ff is also shoti in

Fig. 5. Further computations demonstrate that the error

increases as s/H decreases (computations for s/H= 1.0

yield a 6.77-percent error in c:ff, which is lower than the

corresponding cases when s/H = 0.1). This is due to higher

intensity fringing fields between the lines for the aniso-

tropic than for the isotropic substrate. The coupled-line

algorithm required N= 32 for the desired convergence

accuracy (5.39-s CPU) with the odd-mode converging more

slowly than the even mode.

Equalization of even–odd-mode phase velocities is a goal

for improving integrated-circuit performance such as the

directivity D of directional couplers [77], [78]. In theory,

anisotropic substrates can equalize the even- and odd-mode

phase velocities for coupled microstrip without a cover, but

the required AR is not realizable with known substrate

materials. On the other hand, if a cover is used, the

requirement u; = u; is possible for practical isotropic as

TABLE IV
METHOD OF MOMENTS CPU REQUIREMENT

IBM 3033

CPU
w/H N Z. Ceff (seconds)

0.1 8 101.6595 6.6951 0.390
1.0 12 47.1137 7.1778 0.585
5.0 16 17.0495 8.1724 0.885
7.0 16 13.0352 8.4043 0.880
9.0 16 10.5705 8.5604 0.885

B/H = 10.0, Fig. l(b). For 0.5-percent convergence
accuracy. <XX= 6=2= 13, cYY=10.3.

well as anisotropic substrates. Fig. 6 illustrates the behavior

of Ceff and ZO for coupled lines with AR >1 (AR= 1.26

for Epsilam-10), AR = 1 (isotropic substrate with t = 10.3),

and AR <1 (AR = 0.89 for sapphire) versus B/H. Equali-

zation of phase velocities is achieved in all three cases.
Note, however, that the smaller B/H is, the more sensitive

the coupler design is to tolerance errors. Substrates with

AR> 1 should be utilized where phase velocity equaliza-

tion and lower sensitivity to tolerance errors are desired.

Table VI summarizes eight different directional coupler
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TABLE V
COmpariSOn OF COUIPLEDLINE CHARACTERISTICS

OF EPSILAM-10 ISOTROPICVERSUS
EPSILAM-10 ANISOTROPIC

w/H ZZ, z:,, % Error err. Cff ,, % Error

0.1 158.3048 152.8358 3.455 6.3705 6.8346 7.285
1.0 63.4321 62.3986 1.629 7.3236 7.5682 3.340
3.0 29.2129 29.0010 0.725 8.1945 8.3148 1.468
5.0 19.1763 19.0638 0.587 8.5260 8.6270 1.185
7.0 14.5671 14.4020 1.13 8.5867 8.7847 2.306

w/H Zz, z:,, % Error ~:ff Cff.. % Error

0.1 50.7637 48.1442 5.160 5.6566 6.2889 10.054

1.0 26.6548 25.4680 4.452 5.8253 6.3809 8.707
3.0 17.4429 16.9438 2.861 6.4355 6.8208 5.987
5.0 13.2197 12.9606 1.960 6.9656 7.2468 3.880
7.0 10.5131 10.4271 0.724 7.4683 7.5920 1.656

s/H = 0.1, B/H= 0.5-percent convergence accuracy.
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Fig. 5. Error in ceff versus w/H when auisotropy is ignored. Microstrip
with cover: s/H = 0.1, B/H= 10.
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Fig. 6. Effect of AR on ceff and ZO. Microstrip with cover: w/H= 0.7,
s/H = 0.26.
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Fig. 7. 10-dB coupler boron-fittide substrate directivity versus rotation
O. B/H= 2.8, s/H= 0.095, w/H=l.6.

configurations on Epsilam-10, PBN, and sapphire sub-

strates. For each case shown, the parameters s/H and

B/H were varied to obtain Z:= 69.4 and Z;= 36 Q for a

10-dB coupler matched to a 50-fl line. Whenever v;= u;,

the coupler directivity tends to infinity (D ~ co); as shown

in Table VI, D = 58 dB when B/H= 2.80 for a PBN

substrate (v; = 1.876X 10s m/s, u; =1.875X108 m/s). An

indication of the tight tolerances needed is clearly observed

when the substrate optic axis is misaligned with respect to

the microstrip coordinate system. Fig. 7 depicts the varia-

tion of D as a function of misalignment angle 0, where it is

observed that even for small f3 there is a significant reduc-

tion in coupler directivity [77].

2) Microstrip Couplers on an Anisotropic Substrate with

an Isotropic Overlay: It has been established that coupler

directivity improvement results on isotropic substrates when

an isotropic overlay is used [79]–[84]. An overlay will also

improve coupler directivity on anisotropic substrates by

relaxing the tight tolerance requirements on B/H. This is

particularly true for materials with AR< 1 (e.g., sapphire).

For this design, phase velocities have been nearly equalized

but, more importantly, both impedance and phase velocity

curves vary quite slowly with increasing d/h (decreasing

B/H) as shown in Fig. 8. Table VII indicates the useful-

ness of the overlay in realizing coupler designs with com-
mercially available materials such as a 0.025 -roil-thick sap-

phire substrate with a 0.050-mil alumina overlay. For this

two-layer structure (isotropic overlay on an anisotropic

substrate), the Green’s function is given by [78]

/
~ Cos[(lx – q] N({)G(x– X’)=+ _m

{
~ d~ (67)

where

N({) =c2+qcoth({Hv: tan ({tH ) (68)
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TABLE VI
COUPLERDESIGNS—SUMMARY

Center
(10* m/s) (108 mis) Directivity

Coupler
Freq.

w/H B/H S/~ Z; Z: “0

$ P
(dB) VSWR Coupling

EpsiIam—Shielded 0.700 2.55 0.260 69.0 35.9 1.207 1.210 43 ~ 1.01 10.02
Epsilam-Unshielded 0.800 >6 0.280 69.4 36.0 1.138 1.204 18 1.03 10.00
Alumina Unshielded 0.875 >6 0.260 69.2 35.9 1.150 1.286 12 1.06 10.04
Boron Nitride—

Unshielded 1.850 >6 0.120 70.0 35.9 1.772 1.860 19.5 1.03 9.83
Boron Nitride—

Shielded 1.60 2.80 0.095 69.3 36.0 1.876 1.875 58 <1.01 10.00
Quartz-Unshielded 1.830 >6 0.110 69.2 36.2 1.708 1.886 13 1.05 10.13
Sapphire—Shielded,

90° Offset 0.690 2.20 0.225 69.2 35.9 1.256 1.257 49 1.01 9.98
(CXX=ll.6,

,Y, = 9.4)
Sapphwe—

Unshielded 0.730 >6 0.260 69.4 36.2 1.086 1.227 11 1.06 10.12

(<xx = 9.4,
CPY= 11.6)

z: ,

z%
h

OHMS
60

50 -

40 -

30 1

\

1

I
.95

L
o 1.0 2.0 3.0 ~)h

20dB COUPLER-SAPPHIRE jALUMiNA

(wlh=O.55, slh=O.45, S/h =1S.0)

Fig. 8. 20-dB eoupler-sapphire/alumina...

TABLE VII
COUPLERDESIGNSWITH AN OVERLAY

Xlos X1O* c Isol Dir

No. Type B/H B/h d/h s/h w/h Cz Z: V; Z: V; (dB) (dB) (dB) VSWR

1. 10 dB 8.6 12.0 0.40 0.45 0.55 9.9 69.4 .9905 36.3 .9885 10.1 44.7 34.6 1.01
(unshielded)

2. 20 dB 3.4 6.2 0.80 1.60 0.58 9.9 55.5 .9629 45.1 .9646 19.7 57.3 37.6 1.002
(shielded)

3. 20 dB 4.0 12.0 2.0 1.60 0.55 9.9 56.0 .9323 44.6 .9333 18.9 61.3 42.4 1.002
(shielded)

4. 20 dB 12.0 12.0 0.0 1.20 0.86 — 55.5 1.068 45.3 1.180 20.0 22.4 2,4 1.02

(uncompensated)
5. 20 dB 6.0 18.0 2.0 1.60 0.55 9.9 56.1 .9306 44.6 .9333 18.9 53.0 34.1 1.00

Sapphire (xx = 9.4, CYY= 11.6. Alumina Cz= 9.9, Cq=1.0.
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VO/Ve. Reprinted by permission from IEE Electronics Lerrers [29].

“1C;+ t3(tXXcYY)1’2coth( ~Hv)

(() )1

1/2

. coth = {Iz

CYY

[
+ C2 [~coth({Hv)+ (cX~Yy)l’2

coth((~)l’{h)]. (69)

{’}The even and odd Green’s function components G o (x –

x’) are obtained by using (29) and (30)

3) Broadride - Ccwpled Microstrip Lines: Broadside-cou-

pled microstrip lines are considered as another application

of the method of moments. The even–odd-mode Green’s

function for the structure shown in Fig. 9 is developed into

the series form [29]

2exp(- V,IX – x’1)

v,h

Isd[v,;(:)’z]
cxx,

[mh Cxx, 1/2
COS2 —‘5 Eyy,

‘{6xx2vcs;lv~
11

(70)

where v = B/h – 1, V[ is the 1th zero of the transcendental

equation

‘an[wr21-’=(_p,(6xxf(71)

, +%$] =

and p = ~ 1 for even and odd modes, respectively. Incor-

poration of the Green’s function in the algorithm yields the

results [29] shown in Fig. 9(a) and (b) for broadside-cou-

pled lines on anisotropic Epsilam-10 substrate. The curves

{e}o,v{:}shown indicate very small differences in Z o

values between Epsilam-10 (cXX = t== = 13, cyy = 10.2) an%

AISiMag 838 (c= 10.2) substrates. For small linewidths,

however, the error increases when anisotropy is neglected

since the fringing fields between the broadside-coupled

lines is not accounted for correctly.

The method of moments proves to be a powerful tool in

the effort to obtain the quasi-static characteristics of single

and coupled microstrip lines on anisotropic substrates.

Multiple material layers, either anisotropic or combina-

tions of isotropic and anisotropic layers, can be incorpo-

rated into the algorithm easily by considering the ap-

propriate Green’s function for the structure. For the

assumed geometries in this section (no sidewalls), the

Green’s function can be obtained either in integral or series

form. For each structure, the series form as obtained by the

Cauchy residue theorem, although it requires approxi-

mately 1/3 the computer time, is not as accurate as the

integral form. This is due to the error accumulation in-

curred during the location of the roots when (65) or (71)

are solved numerically. The results obtained for the char-
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acteristic impedance by incorporating the series form in the

method of moments algorithm are consistently 1 –2-percent

low. The integral form should be used where very high

accuracy is required.

C. Coordinate Transformation Method

A simple approach to analyze the properties of micro-

strip on anisotropic substrates (without cover) may be

developed if the Green’s function given by (62) is examined

closely. The anisotropy and structural dimensions are in-

volved explicitly in the denominator term given by

[ 2’1’2”c0th{’H3’}’’2H)J (%%Y–f.,

1

If there is no top cover, Hv ~ co as B -+ m, and therefa-e

coth (rHv ) +1. The denominator may then be rewritten as

f[ce,coth(~He,)+ c,] where [68]-[71]

(
‘ 1/2

c
eq

= Exxcyy — Cxy ) (72)

and

‘eq=[t-(2rrH’73)
This procedure reveals that the anisotropic substrate may

be replaced with an “equivalent isotropic” layer whose

permittivity and thickness are defined by (72) and (73).

This equivalent rkcrostrip problem can then be solved with

an appropriate algorithm for isotropic substrates [74], [75].

A more rigorous justification of the “equivalent isotropic”

problem has been derived by considering the simple case of

a diagonalized tensor ~ (6X. = CYX= O) [67], [68]. The coor-

dinate transformation

()

1/2
7=X ~=y L

●YY

yields Laplace’s or Poisson’s equation in the ~, v coordi-

nate system for a substrate characterized by

()Ceq = (q(,)” and Heq = ~ ‘“H.

Furthermore, the relationship between +(x, y) and @(~, v)
is readily established as @P~;, y) = @Q( T, U) and

~@P(A Y)/~Y = (d@Q(T, u)/~u)fi where Q(t, v) is the

point P(x, y) transformed into the (T, v) coordinate sys-

tem. Under this transformation, the boundary conditions

at y = H are invariant [68], i.e.,

Ex= – !#=ET and DY= –coceq~=DU. (74)

This method has been used in conjunction with the Bryant

and Weiss algorithm [74] but the results obtained [68] are

in error ranging up to 20 percent, due possibly to erro-

neous adaptation of the algorithm.
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This approach should be used with caution when micro-

strip with a cover is considered, since the term coth ({Hv)

cannot be equated to unity. ‘For this case, the denominator

of the Green’s function takes the form ([te~ coth(fHe~) +

c~coth((Hv )], and, strictly speaking, the concept of an

equivalent isotropic substrate is no longer valid. Neverthel-

ess, an algorithm for isotropic substrates can still be used

with the extra, care of proper entry for Ceq, Heq, and H.

D. The Image-Coefficient Method

An alternate approach, which also leads to the conclu-

sions of the previous section, is to obtain the Green’s

function by considering the method of images for aniso-

tropic media [30]. As a first step, Poisson’s equation is

considered with a’ unit strength per unit length charged line

source at x’, y’. For the moment, the entire space is

anisotropic and is characterized by a diagonalized tensor ~.
Poisson’s equation takes the form [67]

a2G ~ ~ a2G 8(X–X’, y– y’)
e——

‘x 8X2 yyay’ = –
(’75)

co

Transforming coordinates with ~ = x/&, v = y/~Yy,

and using the delta function property ~(ax) = 8(x)/ [al,

the equation is written as

a2G ● a2G 1
—d(T– T’, V–v’).

L?T2 ‘=–av2
(76]

~o~xafyy

This transformed Poisson equation easily yields the solu-

tion

@X- X’, y-y’)=&

r’ 1
lnll*, (77)

where, as before, Ceq= &
If the line source is now

placed at x’, y’ above an anisotropic half-space (see Fig.

10), then consideration of the boundary conditions at the

interface (y = O) and the reciprocity y theorem [30] yield for

this configuration the solution

G(x–x’, y–y’)

.

& ln

r

1 1
F==E1l’

y <0 (78)

1
— in

Ii

1 1P2

27r60
+—

(x - x’)’+ (y - y’)’ 2T’”

. in
1

1

y >0 (79)

((x -x’) ’+(y - y’)2 ‘
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Y. Ipo=l

Y, PI = 1-K at Y,

7
T7’-mr-G

F

Anisotropic Half-Space y <0

Y* l~2aty2, P2=K, y2=-y0

I
Fig. 10. Imaging a line charge source (pO =1) over an anisotropic

half-space.

where

(80)

and

I–Eeq
K=—

l+ceq”
(84)

For the microstrip geometry (without cover), multiple

images result, just as for an isotropic substrate. Using

image theory for this structure, the Green’s function is

written in the form

G(x–x’)=
1 ~ ~.-,

27XO(1+%J .=l

‘/ l’nz+(=l’l!(’n’+=l’]

“’n[4(n-1)2+(=:r114(n-1’2+(&rl 1
(85)

where

This expression is identical to the Green’s function by the

method of images for rnicrostrip on an isotropic substrate

[86] provided the isotropic layer is characterized by the

relative dielectric constant ~~~ and substrate thickness Heq.

This series representation of the Green’s function con-

verges rapidly and it yields results for the microstrip capa-

citance per unit length with excellent accuracy when

adopted with an appropriate numerical method [30].

The theory of images is easily extended to obtain the

Green’s function for an electrooptic modulator structure,

i.e., a metallic strip conductor on an anisotropic substrate

of thickness H without a ground plane. This Green’s

function is given by [30]

G(x–x’)=
1

2mco(l+teq)

[1()
2

x+x’
4(n–1)2+ ~

. ~ Kn-lln eq
, ‘ . (86)

~=1

()
4(n–1)2+ y

eq

These series representations, for both the microstrip line

and electrooptic modulator structures, converge quite

rapidly and they have been adopted in the discretized

integral equation [30]

V= f fv+’p(x’)G(x –x’)dx’ (87)
j+ .!’j

where

( )
xl—x

P(x’)=f, +(q+l –P, )
J o<x’<w/2

‘J+~—x]

(88)
with

‘J= W1-+3’} ~=17273””-5m+1
(y=l,2,0r 3). (89)

The expression given for p (x’) gives an excellent piecewise

approximation of the true charge density distribution for

O <x’< w/2. The total charge on the half-strip is

Q = f ~y’+l~(X’) dx’. (90)
J=l Yj

When the conductor is charged to 1 V, the lineal capaci-

tance is C = 2Q.

The accuracy of this approach is remarkable. The error

(again comparing to the value obtained with conformal

mapping) for rnicrostrip on isotropic substrates is quoted

as less than 0.0024 percent when w/H= 0.01 and less than

0.001 percent for w/H >0.01 [30]. Similar accuracy is

observed for the electrooptic modulator case [30].

E. Application of the Variational Principle

The variational principle is a powerful tool in that it

yields results with very good accuracy for a variety of

integrated-circuit structures. Furthermore, it provides up-

per- and lower-bound numerical results for the capacitance

of single and coupled printed strip conductors with arbi-

trary substrate parameters and conductor geometry. In this

section, the variational expression for capacitance is pre-

sented in the Fourier transform or space domain for a

variety of microstrip geometries, as well as for unshielded

suspended stripline, coupled slotlines, and coplanar wave-

guide structures on anisotropic substrates.

1) Fourier Tran4form Representation: The variational ex-

pression for the lower-bound computation of capacitance
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can be derived in the form [87], [88]

where p(J) and 8({ ) are the Fourier transforms of the line

charge density and Green’s function, respectively, while Q

is the total charge per unit length. This variational expres-

sion can be rewritten as

11
—fliml’m ff) d7=mQ2 ~

(92)

where ~({, ~) is given by the following expressions de-

pending on the structure under consideration.

Microstrip with cover: ‘

.
(93)

‘(~’ ‘)= cOr[c,~coth(@q\+ ~’coth({~~)]

(usually 6’= 1).

Microstrip without cover:

1
(94)

‘(J’ ‘)= cO([c,~coth((Heq) +c2] “

Unshielded suspended stripline or coplanar striplines:

Ceq coth ({He~ ) + 1
g({, ~) =

,Of[(l+ ce,)+2ce,coth({H,~)] - ’95)

The trial functions which are typically used to minimize

the error in the computation of 6 ‘are

{

1X1, 1X1< w/2

P(x)= 0, &l>w/2

or

L1+ 12x/w[3, 1X1< w/2
p(x)= ~

1X1> w/2”

The corresponding Fourier transforms are

(96)

(97)

(98)

[()~Cos $- ~w,2

2sin (Jw/2) + sin’ (rw/4) 1~{w/4)2 “ (99)

The, method is easily extended to include the even- and

odd-mode capacitance computation by considering the fol-

lowing representation for the Fourier transform of the

charge density:

~{:}({) =2y/’+wp{:}(x);: {{x} dx. (1OC!)
s/2

The Rayleigh–Ritz procedure has been employed with this

method to determine the unknown constants, the a i, in the

expansions [36]–[38]

M+]

p(e)(x)= ~ alxz-l (101)
,=1

and

M+l

p(o)(x)= ~ a,(w–x)’-l. (102)
j=l

For microstrip on an isotropic substrate without a cover

layer, with w/H >0.5 and s/H> 0.5, the reported error is

less than 1 percent for the upper-bound even-mode char-

acteristic impedance and 2 percent for the odd mode.

However, for small s/H (less than 0.1), with w/H >1.0 or

w/H <0.1, the error exceeds 6 percent [37]. Large errors

result with this method for the case of microstrip with a

cover [38]

The trial functions given by (98) and (99) have been

considered to analyze the unshielded stripline on a

Lithium-Niobate substrate (Li-Nb-03, CXX= 28, CYV= 43)

[88]. The results obtained using the variational principle

have been found to be in error by 4–10 percent when

compared to the approach which uses image theory with

the numerical technique discussed previously [30]. ‘The

corresponding formulation for even- and odd-mode

upper-bound capacitance co~putation is given by [36]–[38]

where the trial functions for the potential may be chosen as

L

~-ai(d -x)-’, O< X< S/2
j=L

1, s/2<x<s/2+w

N+l

~ b,(x- d)-’, x>s/2+w
~=1

(1.04)

with L = M + 1 for even modes, L = M + 2 for odd modes,

and d = (1/2)(s + w). The unknown constants al and b~

may be determined with the procedure used for the lower-

bound computations. For isotropic substrates, the incurred

error is found to be 2 percent for the even-mode imped-

ance and 4 percent for the odd mode (by comparison with

the results reported in [74] for s/H> 0.5 and w/H> 0.5).

For smaller s/H and/or w/H, the error is substantially

larger.

2) Space-Domain Formulation: A variational representa-

tion for the capacitance per unit length can also be given

directly in terms of spatial coordinates, i.e., [12]

c=

(“”2p(x)dx

J:;2J:::(X::Y-Y’)P(Xdxdx;”
(105)
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I
“ where c~ (j, p) are unknown coefficients and kf~( j, p) are

known parameters on the pth side of the jth conductor.

Utilizing the inner product definition and substituting (110)

into (106), the ~ can be expressed as

E.
y=~;

J=lP=l

(111)
F

—x Subsequently, the inner product of VI with

Fig. 11. Multiple conductor microstrip system. exp { ~n(i, r)sr} yields

(exp{~m(i, r)sr}, v)zr= ~ ~ 5 c,(-i, p)

It converges to the true value from the lower side. This

j=~p=~k=–~

variational representation has been implemented to analyze .(exp{M~(i, r)s,},(G(~,, ~~),exp {~~(~, ~)~~})),,,j~

the properties of microstrip, inverted microstrip, and (112)
coplanar lines with multiplle anisotropic layers in a rectan-

gularly shaped shield [39] -[42].
where

The variational method can readily be extended to con- ( ) =
//

ds, ds~exp{M~(i, r)s, }
sider the characteristics of the system of N microstrip lines

lr>JJJ
g, fqp

shown in Fig. 11. The conductor thickness may

taken into account [34], [35]. The potential of

conductor is given for this configuration by

~= f f j ds;G(sr, s;)q,,(s;)
j=lp=l qF

with i=l,2,3,. . . , N. JY,n denotes integration on

also be

the i th “G(~,~j)exP{Mk(~P)~j}. (113)

In order to simplify notation, the following matrices are

defined, namely the column vector

the p thJY
side of the jth conductor,, M the number of conductor

(106) [Y(m, i,r)] = [(exp{M~(i, r)s,}, ~)l,] (114)

and the sauare matrix

‘ [T(m, i,r, k,j, p)] = [( )ir, jp]. (115)

sides (M= 4- for the rectangularly shaped strips considered These definitions enable (112) to be rewritten in the matrix

here), and s; the integration variable along the pth side of form

the jth conductor. s,(s~) denotes x(x’) or y(y’) depending [T(m,i,r; k,j, p)][ck(j, p)] = [Y(rn, i,r)]
on whether the p th side is parallel to the x- or y-axis.

Lastly, qjp(s;) is the unknown charge distribution of the
(116)

pth side of the jth conductor and G(,sr, s;) is the Green’s which, upon inversion, yields the solution for the unknown

function satisfying the Poisson equation. The total charge coefficients

on the j th conductor is

A [ck(j, P)] = [~(m, i,~; ~,j, p)]-’[y(~, i,~)].

Q,= i / ~J,(s;) ~~; (107) (117)

*=1’9,p The total charge on the jth conductor is finally obtained as

which may be rewritten as

Q,=~ ~O>qJp(~p))J,p. (108)
QJ=k=g Mp$_, ck(jj P)(l!exP {uk(j!P)sp}),p”

JP (118)

The inner product is defined here by In view of the assumption that ~ = 1 and VI= . . . = ~. ~

= V~ = O, the variational expression (105) is

-~ d$PV(?P)W(.p). (109) r~w~i~t~~o~ C,,=Q, as(v(s,), ‘(s~))J,P - ~

1P
[4 \2

The unknown charge density on the pth side may be

(! ,=1Z9’ ~ ~’rqr(sr)written in terms of the following expansion:
Q=

,r tr J
M(J, p)

qJp(.Sp)= ~ Ck(~, P)eXP{Mk(~, P)Sp}
i ~ ~~r%(~r) f i f ~@v,s;)q,p($) “

k=– M(J, p)
r~l % j=l p=l ‘lP

rGqr P = E,p

(110) (119)
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TABLE VIH
CONVERGENCE PATTERN FOR CAPACITANCE PER MSTER FOR MICROSTRIP ON SAPPHIRS

ql + qy q~+ qq
u~(2)= u~(4) Uk(l) = u~(3) (nC) (nC) C(nF/m)

0.0 0.6 +0.83, 0.01847 0.1832 0.2017
0.0 0.6 1.2 1.8 &o.55, * 1.66 0.02109 0.1789 0.2000

0.0 1.0 + 0.083 0.02093 0.1790 0.1999

0.0 1.0 *0.055, io.17 0.10977 0.1812 0.2010

t/H = 0.3, w/H= LO, B/H= 6.0.

This expression is useful in obtaining the effect of the conductor thickness on the propagation characteristics of

microstripconductors [34], [35]. The Green’s function pertinent for this purpose is [34]

G(x–x’, y–y’)=&~mcos [“xLx’’lsiwB7))
.“x”y’inh(’(y’iH))co’h(:)+’inh(Y)’osh(’(y<iH))$,,20,

‘@sinh(’(Bi7)c0sh(3+sinh(f)c0sh(’(B)
-rwhere y< = min(y, y’), y> = max(y, y’), nX – CXX, and

‘Y ‘+YY.
A single conductor of thickness t is considered presently

as an application of the just-outlined approach. On the

vertical sides (p =1,3), the charge distribution is expressed

as

4p(y)=k=~Mck(p)exp{~k(p)y})p=l,3

while on the horizontal sides (p = 2,4), q is given by

M

across the slot aperture and

“(124)

The aperture electric field is written as the expansion

N

ex(x)=eo(x)+ ~ akek(x) (125)
k=l

where

~P(x)=k=~Mck(p) exp{uk(p)x}.

Table VIII demonstrates the capacitance convergence pat-

tern of this technique. Even with the choice of u~ = 0.0, the

value of ZO is found to be within 5 percent of its conver-

gence value. An example of the dependence of ZO and up

on t/H is shown in Figs. 12 and 13, for w/H= 1.0 and

B/H = 6.0. Clearly, for w/H= 1.0, the variation of ZO and

up with t/H is a second-order effect. Convergence is

obtained, using this technique, with two or three u~ points.

In addition, it has been determined that for increasing

values of w/H, faster convergence is achieved if the

parameters u~ are chosen as Uk = H/w [34], [35].

3) Extension to Coplanar Waueguides: The variational

principle can be extended to yield an expression for the

capacitance of the coplanar waveguide (CP) in the form of

[89]

~’+”~’+w/meX(x)G({; x-x’)eX(x’) dxdx

c=
o

(J }

2
s/2 + w

eX(x) dx
s/2

(123)

where eX( x ) is the unknown electric-field distribution

‘r(x~s)}
ek(x)=,,_(2(xis,~~/2

(126)

The Chebyshev polynomials Tk{ x } of the first kind are

used, and the parameters are calculated using the

Rayleigh-Ritz method. This technique yields results which

are identical to those obtained by conformal mapping

when N >2 in the absence of the substrate, and it is

considered to be highly accurate when the anisotropic

substrate is included [89]. The variation of ~.ff and Z.

versus 6, as obtained by this method, are shown in Fig. 14

for a sapphire substrate (0 is defined here as in (53)).

V. MODELING DISPERSION

The quasi-static methods described previously provide

solutions of limited validity since they do not account for

dispersive effects. Simple frequency-dependent formulas

based on empirical observation and curve fitting have been

derived, but they too are of limited value. They either

apply exclusively to a sapphire substrate [2], [4] or they are

not accurate enough for electrically thick substrates. Al-

though they may lack general applicability, these methods

and formulas offer the convenience of closed-form alge-
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Fig. 12. ZO versus (t/H) for 1: Polystyrene (fx. = CYY= 2.54); 2:

quartz (CX,= C,,Y= 3.78); 3: sapphire (cr,y = 9.4, (,V = 11.6). Reprinted
by permission from the Journal of the Franklin Instllute [34].
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Fig. 13. VP,, versus (t/H) for the microstrip of Fig. 12. Reprinted by

permission from the Journal of the Frankkn Institute [34],
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Fig. 14. Effective dielectric constant Ceff and characteristic impedance

ZO versus 0.

braic expressions. For reference, then, some of these are

presented.

An empirical formula for the frequency-dependent effec-

tive dielectric constant for a sapphire substrate is given as

[5]
. —.
‘req CeO

Ceff = Creq —

()

(127)

1+ g 1“33[o.43f’-o.oo9f3]
o

where e~eq is defined by (40) and ce. is the static effective

dielectric constant. H is in millimeters and ~ in gigahertz.

This formula is reportedly valid with a ~ O.S-percent error

over the frequency range 2< ~ <18 GHz and for a char-

acteristic impedance value of 10< Z. <100 Q [2], [5]. A

dynamic solution obtained by the method of moments to

within 0.5-percent accuracy [56] indicates that the error

estimate in using (127) is within <3.3 percent for w/H=

0.5, <1.5 percent for w/H= 1.0, and <2.5 percent for

w/H = 5.0.

An approximate empirical formula which applies for

arbitrary substrate anisotropy and thickness has been de-

rived by combining two different dispersive models for

isotropic substrates. The effective dielectric constant is

defined as [90]

{-

4
if 11> Iz

[11+ 1,]2’
c~ff =

1
(128)

if 11< Iz~; ‘

where 11 and Iz are dispersive models for isotropic sub-

strates [91], [92]. 11 is expressed in the form

~k=ootan-1[’e,130)

()277H 1+ # [C,,q–~~o]l’2

For 12, the expression is

with

f,=

4H(cr,q–1) 1’2[X1+2Q(’+H2“
(132)

In these definitions, c,e~ is the equivalent relative dielectric

constant at zero frequency for an isotropic substrate on

which the microstrip line (w, H being identical to the

original line) has the same effective dielectric constant c.0

as the latter line at zero frequency. Also, U. is the speed of

light in vacuum.

The accuracy of the (,ff formula given by (128) is very

good for large w/H and arbitrary H/A o. When H/ A.>

0.03 and w/H <1.0, however, the error for a sapphire is of

the order of 4 percent. Clearly, for cases of arbitrary

anisotropic substrates, a more precise accounting of disper-

sion is required. Rigorous solutions to Maxwell’s equations

addressing that need will now be presented.
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A. The Transmission-Line Matrix (TLM) Technique

The TLM method, as it applies to anisotropic substrates

[44] provides a solution to Maxwell’s equations in the time

domain by determining the impulse response of an equiv-

alent distributed transmission-line network that models the

given waveguiding structure [44]–[49]. The equivalence is

obtained in terms of ideal two-wire transmission lines of

length Al connected in a three-dimensional lattice arrange-

ment. At the transmission-line crossings, shunt or series

nodes are formed which enable accurate characterization of

the propagating medium with the incorporation of open- or

short-circuited transmission-line stubs at each node. These

transmission-line stubs are most instrumental in that they

model the relative permittivity, conductivity, and relative

permeability of the substrate. In the analysis, Kirchoff’s

voltage and current laws are applied to the equivalent

three-dimensional network to yield a set of equations iden-

tifiable as an analog to Maxwell’s equations (as they apply

to the guiding structure).

The equivalent three-dimensional circuit is a periodic

structure and it therefore exhibits the inherent passband

and stopband frequency response characteristic of periodic

networks. The upper frequency cutoff $Z of the TLM

model is the highest frequency of the lowest passband and

it is determined by the mesh size Al. It is possible to

increase f2 by choosing a smaller mesh size ( f2+ m as

Al ~ O). Moreover, for a given frequency having a finer

mesh or smaller, Al increases the model accuracy but at

the expense associated with rapidly increasing computer

run times and storage requirements. Distinct advantages,

however, such as simplicity, versatility, and direct modeling

of the physical waveguiding processes make this method a

very useful engineering tool.

The TLM technique will be adopted herein to solve

Maxwell’s equations in the general form given by (7)-(19)

for the microstrip structure shown in Fig. l(c). A gener-

alized node is shown in Fig. 15(a). It consists of three shunt

and three series nodes A1/2 apart from one another.

Permeability is modeled by a short-circuited stub attached

to each series node, while an open-circuited stub attached

to each shunt node models permittivity. In addition, con-

ductivity may be modeled with an infinite or matched line

connected to each shunt node, and referred to as a loss

stub. The coordinate orientation of the stubs denotes the

particular component of the diagonalized tensor modeled

by the stub, while the dashed lines in Fig. 15(a) are guide

lines (and not equivalent transmission lines or stubs) [44].

The transmission-line representation of this generalized

node is shown .in Fig. 15(b). It illustrates the three-dimen-

sional formation of shunt and series nodes (for clarity,

stubs are not included in this figure). The voltages at the

three shunt nodes represent the E-field components, while
the currents at the three series nodes are associated with

the H-field components in the three coordinate directions

as shown in Fig. 15(b). Guide discontinuities and substrate

material properties can be modeled with the appropriate

choice of the stub electrical parameters (admittance or

impedance). A better understanding of this may be at-

+
Shunt node

-1-

Seri*8 node

i

short circuited stub ~ open circuited $tub

(permeability etub) I (permittlvity stub)

—-- Infinltoly long *tub(loss stub)

(a)

Y

(b)

Fig. 15. (a) A generalized three-dimensional node. (b) Three-dimen-

sional node.

tained by considering a series and a shunt node individu-

ally. The series node shown in Fig. 16(a) is analyzed by

considering the equivalent lumped network schematic of

Fig. 16(c). The short-circuited stub of length A1/2 is in the

~-direction and its input impedance is Zin =

~zxx(L/c) 1/2 tan (a AZ/2c), where ZXX is the line char-

acteristic impedance. If u A1/2c <<1, then Zi. = j&’,

where L’= ( ZXX A1/2)L. Kirchoff’s voltage law then yields

for this series node

a02 ~=_2L ~+zxx dix

ay – az ( -)-4 at -
(133)

This network equation is an analog to Maxwell’s equations.

Upon identification of UZwith &“, UYwith &Y, and iX with
XX, it follows that (133) and (14) are equivalent, provided

[44], [45]

pO=2L (134)

and

4+ Zxx
IJxx= 4 . (135)
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Fig. 16. (a) TEM lines connected in series. (b) A generalized series node.

(c) Series node lumped network representation.

A sin+lar analysis for series nodes in the xy- and xz-planes

yields upon application of Kirchoff’s voltage law

q (?() Z=, diz
-— <=
ax 13y ()“2L l+T z

(136)

and

_–2Ll:zyy ~aux au=

dz ax () 4 13t“
(137)

Comparison with Maxwell’s equations indicates the equiv-

alences Uy= 8Y, VX= ri7X,i:= X,, and iY = WY hold if the

following identifications are made:

4+ z,=
P., – 4 (138)

and

4+ Zyy
PyJJ– 4 .

—— (139)

Continuing, the yz-plane shunt node shown in Fig. 17(b)

is considered. In this case, the open-circuited stub (for

permittivity) and the loss stubs (for conductivity) are in the

~-direction. The input admittance of the open-circuited

stub is given by Yin= juYXXCA1/2( o A1/2 c << 1), so that

EEElAl

Al

(a)

r’

+

g
2 5 UYXX, CYXX

(PennMvit’ stub)
2 4

L, C

I

Y

I ‘\\ LZ

1 ‘ 6 L/Qxx, CGXX
(bWrite loss stub)

(b)

/

8iy

‘Y-TZ
LAl12

LAf12 A

ai
iz -&At

LAI12

iY

Al

(c)

Fig. 17. (a) TEM lines connected in parallel. (b) A generalized shunt
node. (c) Shunt node lumped network representation.

the equivalent capacitance is C’= YXXCA1/2, while the

total node capacitance is 2C(1 + YXX/4) Al. Application of

Kirchoff’s, current law at node A yields

A similar procedure in the other two planes produces the

equations

and

Comparing (140)–(142) with Maxwell’s equations suggests

the following parameter equivalences: 4’X- UX, %= E i,,

~y ~ iy, Uxx = GXJZO Al, CO= 2C, and CXX= (4+ YXX)/4.

Smnilarly, .%X - iX, 8Y = z+, Uy, = GYy/ZO Al, Cyy= (4 +
Yyy)/4, and 8= G U=, u==G Gzz/ZO Al, and CZZ= (4+ Y=,).
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Fig. 18. Continuity of tangential fields across a dielectric boundary.

The previous discussion dealt with the derivation of the

equivalent distributed circuit which models Maxwell’s

equations in the point form. Thus, the equivalent circuit,

which is an analog to the differential form of Maxwell’s

equations, is obtained in terms of a generalized node with

three shunt and three series nodes. A permittivity and a

conductivity stub are qonnected to the shunt node, while a

permeability stub is connected to the series node to com-

plete the model. With this, a propagating medium can be

represented accurately. By connecting appropriately char-

acterized generalized nodes in a three-dimensional mesh,

the individual homogeneous regions of the actual wave-

guiding structure can be modeled. To complete the model,

boundary conditions need to be incorpo~ated. A short

circuit (electric wall) is obtained by shorting out the shunt

nodes in the plane of interest, while an open circuit (mag-

netic wall) is achieved by open circuiting the appropriate

series nodes in the plane of interest. Dielectric interfaces

are dealt with in terms of the continuity of tangential field

components. An example [44] is the xz-plane boundary

between two dielectric materials. In this case, elementary

transmission-line sections connect a generalized -node @

one medium to a generalized node in the second medium

as Fig. 18 indicates. If the tangential field components for

EX, E=, HX, and Hz are considered on either side of the

boundary, then the following equations are obtained:

i?Ez,
E=, = E=, + — Al

dy

aEx,
— Al

‘x2 = ‘XI+ ay

aHx,
HX2 = Hz, + —

ay
Al

aHz,
— Al.

‘=2 = ‘ZI + ay

(143)

(144)

(145)

(146)

These relations are obtained from the correspondence of

the electric field at a shunt node to voltage, and of the

magnetic field at a series node to current.

867

The TLM method predicts, as stated previously, the

impulse response of a given network. According to this

technique, an impulse excitation takes place at some circuit

location. It propagates throughout the transmission-line

sections scattering at the shunt and series nodq locations.

The manner according to which the impulse is scattered at

a given node is prescribed by the scattering matrix pertin-

ent to that node. The scattering matrix of a shunt node is

1 1

1111~[

1 1,1 1 Y,,

[s],~unt = ; 1 1 1 1 ~1 –[1] (147)

llilyll

lllly,

where Y= 4 + Yll + G,l, 11denotes 32, }), or j;, and [1] is

the unitary matrix. For a series node .—

s

–1 1 1 –1 –1
1 –1 –1 1 11
1-1-11 1 +[1]

–1 1 1 –1 –1

1–Z*, Z,[ z,, – z,, – ‘[l 1
(148)

where Z = 4 + ZIP

The voltage–current analog of any electromagnetic fidd

of jnterest can be exeited by imposing the properly weig@ed

voltage and current impulses at the node points of the

equivalent network. These impulse fields can be followed

as they travel and scatter through the network, and allow a

deter@nation of the field value at any point of ‘the guiding

structure by way of the analog and the corresponding

network point. The response is obtained at the point of

observation as the collection of the impulse amplitudes

incident at that point. Fourier transformation of this result

yields easily the ‘Fourier domain response.

Thq TLM method just desc~bed has been applied to

determine the dispersion characteristics of single and

coupled microstrip lines, as well as of rpicrostrip discon-

tinuities on an anisotropic substrate. as defined by a di-

agonalized perrnittivity tensor [44]. The geometry under

consideration is illustrated in Fig. l(c). Due to the even

symmetry in x, a magnetic wall is placed at x = O, and as

such the input data involves boundary conditions which

take the form EX=E== Oat y=O, l?, EY=EZ=O at

x=a, HY=Hz= Oat x= O, and EX=Ez= Oat y=H,

O < x < w/2. Shorting pl~es are pla~ed 2L, units apart

along the length of the microstrip transmission line to form

a resonator. At the lowest resonant frequency of this

cavity, the quantity 2 L, corresponds to half the guided

wavelength of the fundamental propagating mode on the

microstrip line, thereby yielding the dispersion characteris-
tics of the line (i.e., at resonance ~ = m/2L,).

Results for the particular case whe~e w/H= 3, Al= H,

and B/H = 6 are shown in Fig. 19. For these computa-

tions, one thousand iterations were used (only a O.Ol-per-

cent change in resonant frequency is observed if more

iterations are used [44]). The difference in the values as
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Fig. 19. Dispersion diagram for single microstrip on sapphire substrate
w/H= 3.0, H= Al.

compared to an isotropic substrate case reported in the

literature [50] are 7 percent for H= Al, improved to 2

percent for H = 2 Al, and f@lly 0.5 percent if H= 3 Al is

chosen. A crucial point in convergence enhancement is, in

this case, in a priori knowledge of the fundamental-mode

field distribution. It has been found that a more accurate

representation of the fundamental mode results if EY is

excited at all nodes lying directly below the strip conductor

and EX is excited along the edge of the strip.

The TLM method has also been used to predict the

dispersion properties of microstrip discontinuities [44] such

as those shown in Fig. 20. An example of dispersion for

coupled microstrip on sapphire is shown in Fig. 21. There

the dimensions are: a =17Al, H= 3AI, B = 6AI, s = 3A1,

w = 3AI, and Al= 0.5 mm.

The TLM technique as described is a very simple and

versatile method which is easily adopted to obtain the

dispersion characteristics of single or coupled microstrip

lines, as well as of microstrip discontinuities on anisotropic

substrates. An important disadvantage of the technique is

the need for a priori knowledge or very good initial guess

of the dominant-mode field distribution to enhance conver-

gence. In addition, the accuracy is dependent on the num-

ber of iterations used to ensure convergence for the selected

mesh size, Obviously, the finer the chosen mesh size, the

more accurate the solution, at the expense of computer run

time and memory storage requirements.

B. Fourier-Domain Methods

The frequency-dependent characteristics of integrated-

circuit structures on anisotropic substrates can be analyzed,

in addition to the transmission-line matrix method, by

solving Maxwell’s equations with Fourier-spectrum tech-

niques. The electromagnetic-field components may be ex-

pressed either in terms of a continuous or a discrete

Fourier spectrum depending on whether the waveguiding

4

La+ /’”

‘T ,/’
,/’

/’
a=6.5 mm

B=3.0 mm

W=l.5 mm

~= 2.5 mm

H=O.5 mm

a=13Al

---- Continuous line width ~

— Line with step

-o .4 .8 1.2 1.6 2.0

v12L,
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2
0 //
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6 - //
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//

g4 H -1.0 mm

L
d =1.0 mm
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dlacontinulty

oo~ .,2,,,MM-1,
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~,d~
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Fig. 20. Dispersion diagrams for the shown structures.
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where HYTE~ satisfies the wave equation

d 2&CEy

~;2 ‘[{2 +~2-%k;]tiTE=0 Y“

Similarly, the following can be expressed.

LSM Modes (TMY):

jjxr% = .K(~YY/~,) d~~”’

l’+fi’ ay

Fig. 21. Dispersion diagram for even and odd fundamental modes of ~TMy = _ jB(~YY/~f) d~Y”y
edge-coupled microstrip (a = 17A1, H = 3A1, B = 9A1, s = 3A1, w = z
3A1, Al= 0.5 mm, sapphire substrate). {’+p’ ~Y

B“OCW ~TMYfiTMY = _
x

circuit under consideration is an open or a closed structure. ~’+p’ y

Due to the inhomogeneity in the -j-dimension of the strut- and

tures under consideration, the complete field solution is
J@~o~yy~ ~~y

obtained by the superposition of LSE and LSM modes. In fi=~y . – —

this section, methods of solution for microstrip, microstrip
{’+p’ Y
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(153)

(154)

(155)

(156)

(15’7)

(158)

with cover, microstrip in: a rectangularly shaped shield, and where, for this case, J?PTMY satisfies the wave equation

the corresponding cases of coplanar waveguide and slotline

are investigated. The substrate is characterized by a di~

agonalized tensor ~, while the material magnetic and cond-

uctive properties are assumed isotropic (p, =1, u = O).

i) Continuous Fourier Spectrum — Microstrip and

Coplanar Slots: The dispersive properties of microstrip

with cover may be obtained by adopting the continuous

Fourier spectrum in conjunction with the Wiener-Hopf

method [51]. Structures such as microstrip with or without

cover, inverted rrticrostrip, coupled microstrip, coplanar

lines, and coplanar slots may be analyzed by combining

the continuous Fourier-spectrum field representation with

the equivalent network method of solution of Maxwell’s

equations [52]–[54].

a) Modified Wiener – Hopf method; Microstrip with

cover: For time-harmonic fields and propagation in the

+ .2-direction, Maxwell’s equations are simplified by allow-

ing d/ i?t + ja and il/ at - — j~. Further simplification is

obtained if the electromagnetic-field quantities E and H

are written as the inverse Fourier transforms

J#(x, y) = &/_QJ27(f,y)eJ(xd{ (149)
co

where @’ may represent E or H. With this substitution, the

LSE and LSM modes are expressed in the spectral domain

as follows.

LSE Modes (TEY):

(150)

(151)

(152)

and c1 = CX. = CZZ. The LSE and LSM modes are

posed to yield the following system of equations:

“’TEY=pjx+@z
UP o Hy

and

super-

(160)

(161)

(162)

(163)

with fiX, ~=, fiX, fi, representing the transform of the total

field components. These relations are needed so as to

determine the boundary conditions which ~~MY and H~Ey

must satisfy. The wave equations to be solved in regions 1

and 2 of the geometry shown in Fig. l(b) are given by

(165)

(166)

(167)
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with R; = {2 + /32 – k;. The boundary conditions impose

the following requirements.

Aty=O, B:

8EYTMY
R TEY =

— = O for conductive wall.
Y ay

At y= H and 1x1> w/2:

must be continuous.

At y = H, 1x1< w/2:

are continuous and IX = Hz, ~z = – HX, where ~X and ~z

are the transforms of the current density distribution on

the microstrip. Solution to the aforementioned boundary-

value problem yields the following relations [51]:

Ul({) = jaco

[

coth(ROHv) + w

RO RY
coth ( RYH~q

and

1F,({)

(168)

Jq-@,({) = [Rocoth(RoHv)+R,coth(RtH)]F2({)
(169)

where the quantities U,({), F,({), i =1,2, are defined by

(v= B/H-l)

u,({) = CJEO(X:MY – 6yyyq=H= –J.fx+p.lz (170)

(172)

and

F2(J)=– upo(fiyy -Ep.~)y=H =- BEx-Jfl=.

(173)

A modified Wiener–Hopf method has been applied to

solve this system of equations for the dispersion properties

of a single microstrip conductor on sapphire [51]. The

equation

F~(+j@)TjF~(Tj~)=O (174)

where

Fl({) = F’~({)+e-JrwF~ (-~) (175)

an-d

F,({) =F~(()–e-J{”F~ (–{) (176)

leads to the dispersion equation, which is obtained from

where

and

=0 (177)

(181)

The ~+ are analytic on the upper half-plane Im { >0, and

(175) and [176) are valid for a symmetric current distribu-

tion on the microstrip. The solutions for F,+ are obtained

as

and

where P and Q are constants and x ~ are defined as the

plus functions of Xl({) where

coth(ROHv) + K
xl(r)= R —Ry

coth ( RyH,q ) (184)
o

and

X2({) = Rocoth(RoHv)+ R,coth(RzH) (185)

and {n are the poles of Xl and x* in the lower half-plane.

In addition, A. and B. are the solutions to the system of

equations

and

n = 0,1,2,... (186)

n=l,2, . . . (187)

with

‘es [X; (~.1)1 e-j~nw
Sn =

X:(–1.1)
(188)

and

t = _ Res[x;(~.2)1 e-,~nw.
n

Xi(–{n*)
(189)
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Fig. 22. Dispersion characteristics of microstrip with cover.

The characteristic impedance and the effective dielectric

constant have been computed by this method. An expres-

sion for Zo, based on the definition of wave impedance as

the ratio of the quasi-static voltage at the center of the strip

to the total longitudinal current, has been derived as

PF: ( - {01) ~-,{OW/2
(190)

‘O= – 2i01 OEOF: (0)xI(OJ

where {01 is the lowest order pole of Xl({) given by

{01 = (k$yy – B2)”2.
The effective dielectric constant is computed by using

the definition ~eff = (~/ko)2 and it is shown in Fig. 22 as a

function of frequency up to 40 GHz. Computations using

r
the equivalent isotropic permittivities ~,~ = CX~YY and

c,e~ (as given by (40)) are also superimposed for compari-

son. When c~~ is used, an error of 4–10 percent or greater

occurs for f >5 GHz, while the linewidth-corrected em-

pirical expression for c,e~ yields excellent agreement up to

about 25 GHz, while at 40 GHz it introduces an error of

about 2 percent [51].

b) Equivalent network method: An approach which is

straightforward and more general in that it can be readily

modified to yield solutions to a variety of integrated-circuit

structures on anisotropic substrates with or without cover

is the equivalent network technique [52]–[54]. The structure

of Fig. l(h) is considered for which the electric- and

magnetic-field components transverse to the y-direction

are expressed in the case of microstnp lines as [54]

(191)

where i =1,2,3 refers to the i th region of the multiple-

(1) (1)
K1 ,Z~

l-+‘1
Y.o

Y =-H2

(3) (3)
KI , ZI

u y=.” H
Short circuit

23

Fig. 23. Equivalent transmission-line circuits for transverse section of

coupled strips.

layered anisotropic’ structure. The index 1=1 corresponds

to LSM and 1= 2 to LSE modes. Furthermore

(192)

and Ko=K/lKl with K= Ji +/32.

Substitution of E)’) and H}’) into Maxwell’s equations

yields the equivalent transmission-line relations

dvji)

— = – jKp)zj’)Ip
dy

and
@)

– _ jKji)y}l)v}z)

dy

(193)

(194)

where

[ 1
1/2

(0= ~J@K2fcl @=[cllk;-K2]112

111

(1)

(i) _
K1 (i) s X!!.!! 1

Z1 _— Z2 and y}’) = —.
ti’f06i L K!) ~jl)

In this development, K~’) and K!) are the propagation

constants in the ~-direction for TMY and TEY waves, while

z[~~ are the corresponding characteristic wave impedances

for these waves (see Fig. 23 for equivalent transmission-line

circuit). The (source) current density on the microstrip

conductor at y = O is given by

~$(xj Y>z)=j$(x)6(y)e-J8z (195)

where j,(x) may be written as

(196)

It is also possible to define i({)e-’{x = – Zfi[il({) ~1({, x)

+ iz({) f2({, x)] so that j,(x) can be formulated as

L(x)= –/m[il({)~({,x)+iz({)fz({,x)] d{.
—w

(1!17)
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Vector multiplication of (197) with jl*({, x) and integra- With the aid of these relations and (198), E}Z ) can be

tion over the spectrum yields the current density transform derived in each region. The electric-field components in

region 1 can be written as
ii(f) = – J@ f,*({, x’).j, (x’) dx’. (198)

—m p(l) ~= e-’pz fm ~~

Proceeding with the derivation of the dispersion equation
-x

for the propagation constant ~, the boundary conditions at

the layer interfaces and the grounded conductors may be

expressed in terms of voltages and currents, i.e.,

~(1)({, HI) =0 (199)

fi(’)({, - ~,)= fi(2)({, – ~2) (200) and

q(l)(f,o) = vp(~jo) (201) ~:1) =

(202)V}3)({, –H2– H3)=0

I}l)(y= O+)–l~2J(y=0-)=i, (203)

and

(204)I/’)(y= –H2)=I}3)(y= –H*).

Decoupling of (193) and (194) results in the solutions
In order

2n J_m~2+/32

/m [[{ ’zF’((,Y)+B2z!’({3 Y)]jx(~’)

+;pyzp((, y)-zp({, y)]j=(x’)]

. e–J{(X– X’) dxf (213)

Xjx(x’)+ [p’zp(~, J))+pzp({> y)]j:(x’)]

.e–J{(x–x’)&. (214)

to derive the dispersion relations for the coupled

q(i)((, Y) = Z) ’)({, y)il({) (205) microstrip lines shown in-Fig. l(h), a solution is obtained

and

1}’)({, y) =L(!)({j Y)ii(I) (206)

where

2}1)({,y) = –
jsin[K}l)(y–~l)]

DO

j sin ( K}l)II1 )

Z}’)({, y) = ~ , [Dlsin(K?)Y)+cos( Kf2)(Y)]

(207)

(208)

Z}3)((, y) = –
jsin [Kj2)(Y + H2 + H3)] sin(fc\l)Hl)

DO sin ( fcf3)H3)

x [D1Sk (K}2)H2) ‘COS ( Kf2)~2)] (209)

y}l)COSIK\”(Y -m]q(’)({,y)=
DO

(210)

y}’) sin(tc\l)H1)
~}’)({, ~) = D [sin(Kf2)y)- DlCOS(K\2)y)]

o

(211)

~(,)(f ~,= _ y}3)sin(Icfl)Hl) COS[K\3)(y + H2 + H,)]
[~ Do sin ( Kj3)H3 )

~ [COS(Kj2)~2)- D, sin(K\2)H2)] (212)

with

Do= y}l) cos ( K\l)H1) + y}’) sin ( Kfl)H1) D1

and

cos ( K\2)ff2 ) yf’) sin ( Kf2)H2 )

sin ( K}3)H3 ) – yj3) COS(Kj3)H3)

Dl =
sin ( K\2)H2 ) + y~’) cos ( K\2)H2 ) “

sin ( K\3)~3 ) y}3) cos ( K~)H3 )

in terms of even- and odd-mode analysis.

i) Even modes (magnetic wall at x = O): For this

particular case, even-mode symmetry implies jX,(x’) =

– j..,( – x’) and j,c(x’) = j=,( – x’), and therefore (213)

and (214) can be rewritten as

.sin(~x)sin(~x’)

‘“ j[@llK y)-.Z;l)({, y)]

“jz, (x’)sin({x)cos( {x’) dx’ (215)

and

“jx=(x’)cos({x)sin({x’)

+ [/3’zp({, y)+{ ’zy({, y)]
“j,e(x’) cos((x)cos({x’) dx’. (216)

On the strip, i.e., for s/2 < x < s/2+ w, E:)= E~~) = (),

and the Galerkin method is invoked to obtain solutions of

(215) and (216) for jX,(x) and j=e(x). These current densi-

ties are expanded into the forms [54]

~Z.(x’) = f am.
“42(x~-s))’ (2,7)

?2=0 ~m

and

.L(x’) = - jn~oanx,u2n(2(X;’)) (218)
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where T.(x) and U.(x) represent the Chebyshev polynomi-

als of the first and second kind, respectively. The particular

choice of this representation for j,e(x’) and jX,(x’) is

dictated by the edge conditions for the current density

components at x = s/2 and x = s/2+ w. Consideration of

the fact that E~~J= E~~J= O on the microstrip and substitu-

tion of (217) and (218) into (215) and (216) yields the

following system of equations to be solved for the prop-

agation constant ~, namely:

Ea a +fi~ a =0,mne nze mne nxe
~=o n+l

m = 0,1,2,3,. . . , N (219)

and

?Y a +fa a co,mne nze
~=()

~=1 mne nxe

m=l,2,3,. . . , N (220)

where

~mne=(-l)m+”(;)’(:)

and

“Jom*[,2p (J,o)+{’wr,o)]

“J43”J+J (221)

Bmne =(-1) ‘+nnw(2/7r)

“JOm+ [WWLO)- .221)({>0))]

“JW)J’H
Y

.
mne ,:%e

(7mne = (-l)m+n4mn(2/7r)

/
w d{

[
Zp(f o)+ ~zp({ o).—

0 {2+/32 ‘ {2 ‘ 1

“J4%)J’rHd’o

(222)

(223)

(224)

Setting the determinant of the system of equations (219)
and (220) equal to zero yields the dispersion equation for

the even-mode propagation constant.

ii) Odd modes (electric wall at x = O): For odd modes,

j..(x’) = 1..(– x’), while j,.(x’) = – j..(– x’) and the

electric-field components in region 1 are now given by

~x(x’)cos(rx)cos(Ix’)+jrB[zfl)(r, Y)–z;’)({, Y)]
.jz(x’)cos({x) sin({x’)] dx’ (225)

and

~(,)= Ze-’Bz w dl
20

v J o p+p

“~’2+w[[B2w(i’!Y)+J2Z41)UY)]
s/2

jz(x’)sin(~x) sin(lx’)

– XB[.ZI1)({, Y)–z\’)({, Y)]

“jX(x’) sin({x)cos({x’)] dx’.

In applying the Galerkin procedure for odd

following expansions have been adopted for

(226)

modes, the

the current

density components jXO(x) and jzO(x), namely [54]:

Lo(x) =

and

‘242(X:-S))!P”JW

.:, u (2(X:-S))<–JL(x)= X an.. ‘..l

Adaptation of the above current distributions and the fact

that E~~) = EJ~) = O on the strip yields, in this case, the

system of equations

fja a +~~ a =0,mno nzo
~=1

~=1 mno nxo

m=l,2,3,. . . , N (227)

and

5Y a +f~ a =0,mno nzo mno nxo

?2=1 ~=1

m=l,2,3,. . . , N (228)

whose solution yields the dispersive properties of the prcJp-

agation constant for the odd mode. For this particular case

. ..0=(-1)”+”(.)2:J”*

.[~’zf’)(r,o)+J2zF) (r,o)]

“J’4?J’43 (2;!9)

Bm”o=(-l)”’”(;) (2n-l)(:)~m&

.[B(Z$l)(J,O)-Z!’({> O))]

“J2n-J$)J2m-&)

(2m -1) ~

‘m”” = (2rl -1) ‘no

(230)
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Fig. 24. Dispersion characteristics of single microstrip on sapphire.

and

8m.o=(-l)”+”(2n -l)(2w-l)(:)~m*

[
“ Zfl)((,o)+ $Zm,o)

1

“4%)43
(231)

Numerical computations based on this analysis have

been performed for various microstrip geometries. The

results show that even for N = 2, sufficient convergence

accuracy is obtained [54]. Comparison of this technique

with the Wiener–Hopf method indicates excellent agree-

ment for the single microstrip with cover case in the

computations for c,ff when w/Hs 4.0. The discrepancy

between the two techniques becomes larger for increasing

w/H, as Fig. 24 indicates. Furthermore, this disagreement,

as Fig. 25 shows, is even more prominent when the disper-

sive behavior of 20 is compared between the two methods.

This discrepancy is also due to the fact that the characteris-

tic impedance in this case is defined in terms of the ratio

Pa,. /12, where P,,e is the average power flowing in

the ~-direction along the microstrip as computed by the

Poynting vector, and 1 is the total current on the micro-

strip. This definition of ZO accounts for dispersion more

accurately than the definition used in [52], which is based

on the ratio of the quasi-static voltage at the center of the

strip to the total longitudinal strip current.

2) Discrete Fourier Spectrum — Structures with a Rectan-

gular Shield: When a waveguiding structure is enclosed
entirely within a rectangular shield, the discrete Fourier

spectrum may be used to determine the dispersion proper-

ties of the distributed circuit [55], [56]. For coupled lines,

the method requires the following Fourier transform defi-

nitions.

Even Modes (Magnetic Wall at x = O):

~yTMy = J“ETMV COS (k~x) dx (232)
OY

jj TE, =
Y J‘HTEY sin (k~x) dx

Oy
(233)

20 (Ohms)

60

l--s

..-

w/H=l.0~ _ - - - -

/“-

40 2.0 -
----

----

I 4.0

20 ._~—
—-— -- quasi-static

-. El Sherbmy’s ~

o
hybrid mode

*

o 0.02 0.04 0.08 0.08 H/k

Fig. 25. Characteristic impedance of single microstrip on sapphire.

Odd Modes (Electric Wall at x = O):

!
~~MY = alj~MY sin ( knx ) dx (234)

o

where k. ❑= n ~/a.

These representations yield for the LSE and LSM modes

the following equations.

LSE Modes:

jxm, = WJOB -
fiz+k;H?

~z% = + j“~ Okn fiTE,
‘~2+k: Y

a~y~y
fixTEy . ~ —

fi2?k~ aY

and

.#
afiy~,

fiTE, . . —
z

P2+k~ aY

where HYT~v satisfies the wave equation with

LSM Modes:

(236)

(237)

(238)

(239)

~z=k;

(240)

(241)

(242)

(243)

and EYTMV satisfies the wave equation with {2 = k:. The
lower (upper) signs refer to even (odd) modes, respectively.

The current distribution Fourier components ~X and ~, can

be obtained by inverting the system of equations [56]

y=]=[g: !#!] (244)
where k. = (2n – 1)/2a~.
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which is valid cm the plane of the strips. The matrix

components G~~ are elements of the Green’s dyailic func-

tion for the multiple-layered geometry shown in Fig. l(l).

The boundary-value problem solution yields for G1~ the

following result:

~ =6 =~kOk#
11 22 [A(L>P)+~2(kn>P)]

y:uc ~

(245)

G12 = ~[k;Fl(k.,~)-P2Fz(kn,p)] (246)
y;tico

~$,o[B2~~(ki,B)-kj~2(~n,B)](247)(?21=—
n

where

~l(kn> B) = [l/ftl + (~$2%ft3 +1)/(L2 + “&)] ‘1

(248)

F2(knj @ = [l/gyl + (gy2gy3 + ~?’ )/

((&’2&2+&J]]-’ (249)

~;=~z+kz (250)

a;’=/{(Yn;ko)2- Ey))/(E$’<f”) (251)

/ (252)afi) = (y~/ko)2– C$i)

f,, = tmh (kOa$iJh, )/a\’) (253)

and

‘i) tanh ( ~j’)koa$’)higy, = ~y ) (254)

The subscript/superscript i refers to the i th anisotropic

layer in the structure.

For the slotline or coplanar waveguide problem, duality

may be invoked to show that the conductor currents are

related to the slot-field components through the relation

[56]

where

& = ~22/~ QU = – ~12/~ ~21 = – ~21/A

(256)

and

A = G11~22 – @21. (257)

The rnicrostrip current density or slot-field distribution

may be expanded in terms of a set of known basis func-

tions { f~(x)} and { g~(x)} in the form

– Jz(x)

}
= i Ckfk(x)

EX(X) k=l

and

jJX(x)

}
= f dkgk(x)

jE, (x) k=l

(258)

(259)

875

where ~k(x ) and g~(x ) are defined only on the microst rip

line or on the slot. The basis functions are chosen so that

the edge effect, is properly included, i.e., ~~(x) = [(x –

*(s + w))/w/2]k-l and gk(x) = sin[kr(x – s/2)/lw],

[56]. The microstrip current density or slot-field distribu-

tion as represented by (258) and (259) are Fourier trans-

formed and the result is substituted in (244) or (255). The

Galerkin procedure is applied to yield a system of (N+

M) X ( N + M) eigenequations for the unknown constants

Ck and d~. On the microstrip or the slot, this is a homoge-

neous system of equations whose determinant is set equal

to zero to yield the dispersive behavior of the propagation

constant /3. The elements of the determinarital equation are

given by

“E
/=1

wlierep =s=ltol14andr= q=lto~.

This-technique has been test~d dgainst already discussed

quasi-static as well as dynamic solutions. In the quasi-static

case, the results of the microstrip couplers with a super-

strata layer shown in Table VII have been checked. For

each case, a difference of less than 0.03 percent was found

for N= 2, A4=1O, a= 20, kO=10-4, and 1=1000. The

dispersion curves for c~$”) as determined by the TLM

method have also been verified. In using the discrete

Fourier technique, a convergence accuracy better than 0.5

percent has been enforced. This convergence requirement

is satisfied when N = M = 4 Ad 1= 300 for the results

shown in Fig. 26, and it has been determined that for the

mesh size chosen the TLM computations are consistently

lower by 3 percent for t$~ and 1.5 percent for c$~. A

particular case of interest is shown in Fig. 27 where as

observed equalization of even- and odd-mode phase veloci-

ties is obtained at those normalized frequencies whtxe

‘) — c(0~ In order to emphasize the vefsatilit y of thisc$ff — ef .

technique, the dispersive properties of coupled inverted

microstrip lines are demonstrated in Fig. 28, while Fig. 29

shows the variation of c~ff for a shielded slotline.

The dispersion curves of Fig. 28 highlight the frequency

dependence of the error incurred when anisotropy is not

included in the computation. The error becomes larger

with increasing frequency and it is of the order of 17

percent when, e.g., normalized k. = 0.70. The results

calculated by this method have been found to be in excel-

lent agreement with those obtained by the equivalent net-

work approach for microstrip with cover and for coup] ed

slots without cover. In addition to the excellent accuracy,

this approach provides a generalized algorithm which can

resolve all the waveguiding structures shown in Fig. 1 [56].

For this reason, it is perhaps the most useful of the tools

presented in this paper for the analysis of the dispersive

properties of a variety of integrated-circuit waveguiding

structures.
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C. The Method of Lines

This method solves directly the wave equation and asso-

ciated boundary conditions for waveguiding structures in a

rectangular shield. It is essentially a simplified version of

the finite differences method, it is more accurate, and

requires less computation time. The system of partial dif-

ferential equations which describes the nature of the propa-

gating modes is discretized in all directions, except the

direction which is transverse to the electrical inhomogene-

ities of the structure under consideration. The procedure

requires, e.g., that the ~-dimension of the circuit of Fig.

l(c) be divided into ~ subsections by defining x.= XO +

nAx with n=l,2,. . . , N (see Fig. 30). This discretization

forces the replacement of derivatives in the ~-direction by

Ceff

8.0I l+- 40.0 -’-q

4.0.

30P75’”
2“0k---’Evenm0
1.0-

0

>

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized k.

Fig. 28. Dmpersion behavior of inverted coupled microstrip lines.
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Fig. 30. Cross section of planar microwave structure on magnetized

ferrite substrate,
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finite differences, and it yields a system of N-coupled

ordinary differential equations. Upon the introduction of

the proper transformed potentials, this system is reduced to

N-uncoupled ordinary second-order differential equations

which can be solved easily. The steps leading to this latter

system of differential equations maybe chosen carefully so

as to account correctly for the boundary conditions at the

side walls of the enclosure, as well as for the edge condition

at the waveguiding circuit edges [93]–[95].

This technique has been adopted to obtain the dispersive

properties of a microstrip transmission line on a gyrotropic

substrate [10]. For the case of a dc magnetizing field

If= jHO, the permeability tensor given by (5) is used with

~.x = ~Ok* ~X2 = h)h ~.vy = ~0) ~ZX = ~tZ! and ~ZZ =

popl = pxx where

y 2M,H0
pl=l+

(yHo)2- U’

and

6) -@4,

‘2=(yHo)2-u2”

(261)

(262)

In these equations, y is the gyromagnetic ratio and M,

represents the saturation magnetization [8]. Maxwell’s

equations are solved in this gyrotropic medium in terms of

the electric- and magnetic-field components in the direc-

tion of Ho, i.e., in terms of E, and HY [10]. A coupled

system of second-order partial differential equations results

for this case in the form

i?2EY a’Ey

()

aHy
—+— –P2EY +pek:Ey = k,v : ~
axz dyz

(263)

and

a2H, 1 a 2H,

()
-–~2Hy+k;HY=–~ ~ ~

ax’ + G ay’ TI P, ay

(264)

where

A discretization procedure is adopted in the A-direction

[10] as suggested in [93] -[95] and [10] which reduces this

pair of second-order coupled partial differential equations

to a system of second-order ordinary differential equations

in the form

(d2

)

1
—+p,k~–~’ –—
dy 2 (Ax)2

and

(-

1 d2—

)
+k~–~2 –

~1 dy2
+[A
(Ax)

(265)

(266)

where ~Y and Hy are column vectors with elements

Eyn, H,. (n =1,2,3, ” “ “, M). In order to arrive at this

system of coupled ordinary second-order differential equa-

tions, the following boundary conditions have been in-

voked.

On Electric Wall:

aH P 2 aHzEY=EZ=O and ~=–j—~.
P1 Y

(267)

On Magnetic Wall:

aE
HY=HZ=O and <= –qp2keHX. (268)

In (265) and (266), [A] is a diagonal matrix and its ele-

ments represent the eigenvalues of the discretization matrix

[10]. Equations (265) and (266) may be decoupled in the

spectral domain to yield a system of fourth-order ordinary

differential equations in the form

1(:5+’’’’)(3+[’e])2$lGy=0y=0
(269)

where QY represents either ~y or & In addition, c: =

This fourth-order differential equation may be solved easily

in terms of hyperbolic sines and cosines to yield the

solutions

EYn = Al~cosh kY1. y + Az.cosh kY2.y (270)

and

HYn = B1. sinh kY1.y + B2. sinh kY2ny (271)

and

(273)

The coefficients B1. and B2. are obtained in terms of Al.
and A‘~ by substituting (270) and (271). A similar alp-

proach is followed in the air region, and subsequently the

boundary conditions are applied at the interface to yield

after some manipulations the dispersion equation in 13/ko.

This procedure as adopted in [10] yields the dispersion

diagrams shown in Fig. 31 for Ho/M, = 2.0 and 8.1 Co~m-

parison with the results obtained by the mode-matching

technique [9] indicates excellent agreement for Ho/M, =

8.1, but a serious discrepancy exists between the two
methods for increasing frequency when Ho/M, = 2.0. Tlhis

disagreement has not been clarified as yet, but previcus

results on isotropic substrates have in general verified the

accuracy of the method of lines. The discussion in this

section simply indicates that this is a useful technique

which can be extended to analyze the properties of in-

tegrated-circuit structures on anisotropic substrates.
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Fig. 31. Dispersion diagram for a microstrip on magnetized ferrite.

IV. CONCLUSIONS

A collection of new results has been presented in this

paper aiming at the clarification of anisotropic substrate

effects on the propagation properties of various

integrated-circuit structures. In addition, the bulk of this

paper has been devoted to the presentation of analytical

and numerical methods which are useful in the accurate

modeling of the effective dielectric constant and character-

istic impedance of various structures such as microstrip,

slotline, and coplanar waveguide on anisotropic substrates.

The various quasi-static and dynamic analytical methods

summarized in this paper have shown that when anisotropy

is not accounted for in the computation of the waveguiding

structure properties, an error is incurred which increases

with decreasing Iinewidth and/or increasing frequency.

The concept of anisotropy ratio (AR) has been introduced,

which may be used as an indication of dimensional toler-

ance sensitivity y for coupled lines with cover, where the

cover is used for achieving equalization of even- and odd-
mode phase velocities. It has been found that, when AR >1,

the equalization of phase velocities is less sensitive to small

variations in the cover height to substrate thickness ratio

compared to when AR <1. Also, it has been seen that by

introducing an equivalent relative dielectric constant and

an equivalent substrate thickness, the anisotropic layer may

be replaced by an equivalent isotropic substrate for micro-

strip without cover. In this case, computations are sim-

plified since existing design methods for microstrip without

cover may be used provided c, and H are replaced by e,~

and Heq, respectively.

The quasi-static methods summarized in this paper prove

to be of practical use when the largest (and transverse to

the direction of propagation) characteristic dimension of

the circuit structure under consideration is small by com-

parison to the source wavelength. Among the various

techniques presented, the method of moments in conjunc-

tion with the pertinent Green’s function provides a

straightforward solution to the integral equation for the

charge density of single or coupled lines. This solution may

be obtained to within desired convergence accuracy even

for open structures since the boundary condition at infinity

is included in the Green’s function representation. On the

other hand, the finite differences technique suffers from

convergence sensitivity problems, especially for open struc-

tures, while the variational method provides results only to

within an upper or lower bound from the true answer. The

method of moments is considered to be the superior of all

the other quasi-static techniques discussed due to its versa-

tility and excellent accuracy.

The dispersive properties of various integrated-circuit

structures have also been addressed in this paper. It has

been found that the Fourier series method is the most

generalized dispersion modeling procedure since it yields

solutions to essentially all the structures of practical inter-

est. It provides, in addition, results to within desired con-

vergence accuracy.

Similarly, the equivalent network method also offers a

generalized approach since it can deal with most of the

integrated-circuit geometries of practical interest with ex-

cellent accuracy. The modified Wiener–Hopf procedure,

on the other hand, is a mathematically elegant technique,

but it has been applied only to microstrip with cover on an

anisotropic substrate and it has not been adopted to tackle

the question of coupled microstrip lines and that of more

general integrated-circuit structures.

The aforementioned dispersive models suffer from a

major disadvantage in that they fail to characterize the

dispersive properties of circuit discontinuities and structure

transitions. The transmission-line matrix and the method

of lines procedures, on the other hand, are adoptable to

modeling effectively the dispersive properties of a wave-

guiding circuit in a rectangular waveguide as well as certain

circuit discontinuities. As stated previously, the TLM

technique has been applied to the geometry of single and

coupled microstrip on sapphire in a rectangular waveguide

for wide microstrip lines. The graphs shown in Fig. 21 for
e.O) have been found to be in error by 1.5 and 3 percent,~:ff

respectively, when compared to the corresponding cases

computed by the Fourier series method when the latter is

applied with a convergence accuracy of 0.5 percent. This

error observation, coupled with the fact that the computa-

tions in [44] refer only to wide lines (w/n z 1), suggests

that there is no sufficient evidence for the degree of accu-

racy provided by this method; especially for lines with

w/H <1 on anisotropic substrates. In summary, the inher-

ent disadvantages of this method are: a) the need of a

priori knowledge or a very good initial guess of the domi-
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nant field distribution; b) the dependence of the method Parris, and M. Schoneberg for typing the manuscript and

on the chosen mesh size and large number of iterations to K. Abolhassani and A. Nakatani for drawing the fig-

necessary to achieve desired convergence accuracy, factors ures. This paper was written at Phraxos.

which may lead to excessive computer run time and mem-

ory storage requirements; c) the method is effective for

modeling dispersion in closed structures only; d) the

method does not yield readily an equivalent circuit for the

discontinuities of interest; e) there is no theoretical or

experimental verification for the dispersive models derived

by this method for the step and gap discontinuities pre-

sented in this paper. The method of lines is also an

effective method to study the dispersive properties of dis-

tributed circuits in a rectangular waveguide with very good

accuracy. Its major advantage is the simplicity of the

resulting computer algorithm which allows efficient circuit

parameter computation on a personal computer. The

method has also been used to model discontinuities such as

aperiodic meander microstrip line and a periodically slotted

microstrip. ‘In addition, it has been used effectively to

model a slotline short circuit. The versatility of this method

in resolving the dispersive properties of step, gap, and

other nonperiodic types of useful discontinuities has yet to

be demonstrated.

Neither the TLM technique nor the method of lines are

adequately general to provide solutions for the dispersion

properties for the majority of the structures in Fig. 1. In

fact, these techniques are ineffective as far as open struc-

tures are concerned and, in particular, in the modeling of

discontinuities associated with open structures.

A novel approach was developed recently which resolves

the dispersion properties of rnicrostrip transmission lines,

and it provides very accurate frequency-dependent equiv-

alent circuits for microstrip discontinuities such as micro-

strip gap, open-circuited microstrip, etc., on isotropic

substrates [15] –[99]. The method accounts for line and

discontinuity radiation loss, conductor thickness, as well as

all substrate effects, including the excitation of substrate

surface waves. The model involves derivation of the stand-

ing-wave pattern for the current density along the circuit

from which the line dispersion properties and discontinuity

frequency-dependent equivalent circuits are derived [96].

The current density standing-wave pattern is obtained by

solving Pocklington’s integral equation by the method of

moments. The radiation aspects of the problem, as well as

the substrate effects, are taken into account by the Green’s

function which is obtained by solving the boundary-value

problem of radiation by an infinitesimally short electric

dipole printed on a substrate [96]. This approach can be

extended to all the microstrip geometries of Fig. 1, where

the Green’s function must be derived for anisotropic sub-

strates. A dual direction may be followed for the geome-

tries which involve slotlines.
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