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Abstract — This paper addresses the problem of anisotropy in substrate
materials for microwave integrated-circuit applications. It is shown that in
modeling the circuit characteristics, a serious error is incurred which
becomes larger with increasing frequency when the substrate anisotropy is
neglected. Quasi-static, dynamic, and empirical methods employed to ob-
tain the propagation characteristics of microstrip, coplanar waveguides, and
slotlines on anisotropic substrates are presented. Numerical solutions such
as the method of moments and the transmission-line matrix technique are
outlined. The modified Wiener-Hopf, the Fourier series techniques, and
the method of lines are also discussed. A critique of the aforementioned
methods and suggestions for future research directions are presented. The
paper includes new results as well as a review of established methods.

1. INTRODUCTION

ANY MATERIALS used as substrates for inte-
grated microwave circuits or printed-circuit anten-

nas exhibit dielectric anisotropy which either occurs
naturally in the material or is introduced during the
manufacturing process. The development of accurate meth-
ods and optimization techniques for the design of in-
tegrated microwave circuits requires a precise knowledge of
the substrate material dielectric constant. It is well recog-
nized that variations in the value of the substrate material
relative dielectric constant, as well as possible variations in
the value of ¢ for different material batches, introduce
errors in integrated-circuit design and reduce integrated-
circuit repeatability. For these reasons and because in
certain applications anisotropy serves to improve circuit
performance, it must be fully and accurately accounted for.
The plurality of substrate materials used for microwave
integrated circuits belong to the alumina family. Permittiv-
ity variations occurring from batch to batch necessitate
repeated measurements for the accurate determination of
the dielectric constant [1]; in addition, these materials are
slightly anisotropic [2]. Teflon-type substrates are usually
ceramic-impregnated, which introduces anisotropic behav-
ior. It is known, e.g., that the E-10 ceramic-impregnated
teflon (commonly known as Epsilam 10) is anisotropic with
a relative dielectric constant €,, =10.3 perpendicular and
€., = €,, =13.0 parallel to the substrate plane. Similar ani-
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sotropies are exhibited by a variety of other teflon sub-
strates such as the TFE /glass cloth and loaded TFE /glass
cloth [3].

Among the crystalline substrates, single-crystal sapphire
(exx=¢€,,=94, ¢,,=11.6) has attracted considerable at-
tention [4]}, [5]. Sapphire exhibits several very desirable
properties in that it is optically transparent, it is compati-
ble with high-resistivity silicon, its electrical properties are
reproducible from batch to batch, and it exhibits a 30
percent higher thermal conductivity than alumina [2]. On
the other hand, it is produced in rather small area samples
(about 22 mm square) and it is quite expensive. Pyrolitic
boron nitride is another anisotropic material suggested for
potential use as a substrate for microwave applications [6],
[7]. Boron nitride exhibits anisotropy with €., =¢,, =512
and €,,=3.4.

There are applications where magnetic anisotropy is
employed (as in nonreciprocal devices). For such applica-
tions, magnetized ferrite materials are used whose magnetic
properties are depicted by a second-rank tensor permeabil-
ity fi. The elements of fi are related to the externally
applied dc magnetic field, microwave frequency, as well as
the inherent physical properties of the ferrite material [§8].
Recently, microstrip [9], [10] and finline [11] have been
analyzed on ferrite substrate layers.

The basic interaction of electromagnetic waves with an-
isotropic materials is well understood. Extensive results
exist in the literature for plane-wave propagation through
anisotropic materials as well as for guided waves in wave-
guides loaded with gyrotropic slabs [15]-[26]. As far as the
determination of the characteristics of integrated micro-
wave circuits on anisotropic substrates is concerned, how-
ever, the existing publications relate mostly to microstrip
structures, with a few publications on the analysis of
coupled slots and slotlines.

The intent of this paper is to present existing empirical,
quasi-static, and dynamic solution methods for the deriva-
tion of the propagation characteristics for a variety of
structures such as microstrip, coplanar waveguides, and
slotlines. Among the quasistatic approaches, the finite dif-
ferences method [4], [5], the method of moments [27]-[33],
and the variational principle [34]-{43] are emphasized. The
transmission-line matrix method [44]-[49], the Fourier
spectrum approach [51]-[56], and the method of lines [10]
constitute the dynamic solution techniques presented in
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this paper. Empirical methods are discussed, a critique of
the accuracy and applicability of each approach is given,
and finally, future research directions are suggested.

II. GENERAL BACKGROUND ON ANISOTROPIC

SUBSTRATES

Dielectric substrate materials are either naturally (e.g.,
crystalline materials) or artificially anisotropic (as a result
of the manner under which they are manufactured). In
either case, the permittivity of these materials is a second-
rank tensor or dyadic, and it is expressed as

) €1 €12 €3
e=[e,]=|€n €xn € 1)
€3 €3 €33

For lossless crystals, € is symmetric (i.e., €, , = €,,). For this
case, € can always be transformed into a diagonalized form

¢ 0 O
é=|0 ¢ O (2)
0 0 e

where the diagonal elements €, €,, €5 are the eigenvalues of
€ and their directions constitute the principal dielectric
axes of the crystal. Furthermore, € is positive definite, and
guarantees that the inverse € ' exists. In general, the
values of €, ¢,, €, are distinct, in which case the crystal is
called biaxial [57]. Most of the crystalline substrates con-
sidered in this paper are characterized by a single axis of
symmetry (optic axis) or equivalently by a diagonal tensor
with two equal elements. These crystals are defined as
uniaxial. With reference to the geometries shown in Fig. 1,
the most general dyadic form of € considered in this paper
will be

€x €y 0
€=|6. ¢, 0 (3
0 0 ¢

The dyadic clements ¢, , and €,, may represent misalign-
ment of the substrate coordinate system with respect to
that of the integrated circuit.

As far as magnetic substrates are concerned, the permea-
bility tensor may take the form

Mxx luxy
F= Byx By O (4)
0 0 p,

when an external dc magnetic field is applied in the
X-direction, or the form

u,x_x O MXZ
ﬁ =10 Hyy 0 (5)
B 0 g,

when the external dc magnetic field is applied in the
y-direction. It is the latter case which will be referred to in
this paper. In the analytical development which follows, a
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Fig. 1.
substrates.

tensor conductivity will also be allowed, that is,

o, 0 0
g=| 0 0, 0
0 0 o

A variety of integrated-circuit structures on anisotropic

(6)

Maxwell’s equations will be considered in their gener-
alized form; thus, the system of equations to be solved is

v X E(r,t) = — %(r, 1)

v><H(r,t)=J+aa—l:

v-B=0
v-D=p

with the constitutive equations

(r.2)

D(r,t)=¢k-E(r,t)

B(r, 1) =poi-H(r,

)

(™)

(®)

(9)
(10)

(11)
(12)
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and
J(r,t)=6-E(r,t). (13)

With the aid of these relations, Maxwell’s equations can be
written in the rectangular coordinate system as

JE, JE, ( dH, N dH, (14
3}’ az TBol By ot Bz at ) )
JE, JE, 9H,
N (15)
JdE JE dH, dH,
R X — _
ax ay P’O(H‘zx a[ nU‘zz 3t ) (16)
and
doH, O0H, JE,
ay _W_oxxEx‘i-eO(exx_Ft_ xy at ) (17)
dH, 0H, B+ JE, . 9E, 18
9z ox ¥ o\ TG ) (18)
dH dH, JE,
pd
x  dy =g (19)

This system of equations encompasses all the cases to be
treated in this paper, and solutions to this system will be
provided for particular quasi-static as well as time- and
frequency-domain cases. Propagation will be assumed in
the z-direction. In the frequency domain, a harmonic time
dependence will be considered of the form e*/“’, This
implies that d /dz — — vy, where v is the propagation con-
stant (y = jB for lossless materials) and d/3d¢ — jw. For
the time-harmonic solutions, the field vectors will be de-
noted by capital letters as, e.g., A(r, 1) = A(r)e’*".

III. ANISOTROPIC MATERIALS IN
INTEGRATED-CIRCUIT APPLICATIONS

The development of sophisticated analytical methods for
the design of microwave integrated circuits on substrates
with anisotropy is meaningful only to the extent that the
physical parameters describing the anisotropy (¢, i, or )
can be accurately determined. For uniaxial crystals, ¢, =€,
is defined as the relative permittivity parallel and ¢ | =€,

€,, as the component perpendicular to the crystal optic
axis.

Among the crystalline substrate materials, sapphire has
been measured at low [58], microwave [59], [60], infrared
[61], and optical frequencies [62]. At 1 KHz, the relative
permittivity values were determined as e , = 9.395+0.005
and €, =11.589£0.005, while at 3 GHz as ¢ , =9.39 and
€, =11.584 [59]. More recent results on sapphire in the
microwave frequency range of 2-12 GHz indicate ¢ | = 9.34
and €,=11.49 with +0.5-percent error [60]. In this case,
the measurements were performed on completely and par-
tially metallized sapphire substrates cut with the optic axis
cither parallel or perpendicular to the substrate surface.
The formula

ew=(g7=) (2 ) (20)

is used for the computation of € normal to the broad walls
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of the cavity, where / is the length of each side of a square
substrate sample, and f, , the measured resonant
frequency of the n, mth node. It is estimated that, with this
type of procedure, the measured resonant frequency is
lower than the actual one by the fraction Af/f=1/20,
where Q is the loaded quality factor of the resonator [12].
This indicates that due to radiation loss at the open ends of
the cavity, the method predicts a permittivity €, higher
than the actual value by the factor Ae/€,, =2(Af/f)=
1/Q. The Q measurements for the (n,0) mode yield Q >
200, and therefore the correction to the measured permit-
tivity, due to radiation losses from the cavity, is much
smaller than 1 percent. When a completely metallized
cavity is used, the measurements produce (due to coupling
errors) higher € than the actual value. Correct estimates of
these types of error are not available, but it is suggested
that €, =9.40+0.01 and ¢, =11.6£0.01 should be consid-
ered as the typical sapphire substrate relative permittivity
values for this frequency range [2]. The +0.01 error range
is recommended by both the low-frequency measurements
[58] as well as those in the infrared [61] (the latter have
shown less than 0.1-percent bulk material dispersion below
300 GHz).

Single-crystal a-quartz is also a useful substrate for both
microwave and millimeter-wave applications, with the per-
mittivity tensor elements having been measured as ¢, =
4.6368+0.001 and € | = 4.5208+0.001 at 1 KHz [58]. Data
extrapolated to zero frequency from measurements in the
far-infrared yield €, = 4.635+0.004 [61], ¢, = 4.693+£0.004
[62], and ¢, = 4.635£0.01 [63]. On the other hand, ¢ , has
been measured as € ;| = 4.436+0.004 [61], ¢ | = 4.461+0.004
[62], and € | = 4.4184+0.01 [63], indicating a discrepancy of
the latter two measurements from the data obtained in [61]
and [63]. Typically, quoted values for ¢, and €, are 4.6
and 4.5, respectively [58].

With the exception of crystalline substrates such as
sapphire and quartz, the bulk of materials used as sub-

_strates for microwave integrated-circuit applications and

which exhibit varying degrees of anisotropy are the soft,
high-permittivity substrates such as 3M’s Epsilam 10® (E-
10), Roger’s RT/Duroid® 6010, and Keene Corporation’s
Dieclad® 810. As an example, consideration is given to
Epsilam-10, which is a ceramic-impregnated teflon material
(low-loss PTFE- (Polytetrafluoroethylene) based substrate).
As in all cases where impregnant (fill) materials are intro-
duced so as to obtain substrate dimensional stability, a
varying degree of dielectric anisotropy is generated. The
permittivity tensor elements of E-10 have the values ¢, =
10.2 and €, =¢,, =13.0. The larger permittivity occurs in
the xz-plane due to the shear introduced in that plane
during processing. The anisotropy of impregnated PTFE
materials can be measured by the plated disk test [64] to
determine €, and by the TEq;; cavity test [3] (estimated
accuracy of this method is 0.1-0.2 percent) for the ¢, and
¢,, elements. A list of data from such measurements is
shown in Table I for PTFE materials.

Substrate materials such as woven glass PTFE laminates
consist of glass fibers oriented along planes parallel to the
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TABLEI
DIELECTRIC ANISOTROPY FOR PTFE SUBSTRATES [3]
Sample
Thickness

Material Description (cm) € €€,y
Unfilled 2 Discs 0.522 2.08 2.09
PTFE
PTFE Glass  CuClad 217 0.051 2.15 2.34
PTFE Cloth  Old CuClad 0.153 245 2.89/2.95

245
PTFE Cloth  New CuClad 0.153 243 2.88
2.45

Filled PTFE  GL 606 0.153 6.24 6.64/5.56
(Glass
Cloth)

=

< 1.20

2 115 Woven glass—lM

é | /

» 1.10

s

,g 1.05| (5880’)/’_f_zf’iji°'d random fiber-PTFE

2 {5870)

2 1.00 : : . - : : : .

2.20 2.30 2.40 2.50 yy

Anisotropy Ratio vs— vy

Fig. 2. Anisotropy Ratio versus €,,. Reprinted by permission from
Rogers Co., TR 2692, July 1981.

xz-plane. These glass fiber planes are interspersed in the
y-direction with the polymer matrix. From an equivalent
network point of view, the substrate appears as a three-
dimensional capacitance network with series connections in
the p-direction and parallel connections in the x, y-direc-
tion. This equivalent representation indicates that e ,, <€,
€,, <e€,. If it is desired to minimize anisotropy in com-
posite substrate materials, the obvious solution is to (again
considering the woven glass PTFE as an example) orient
the glass fibers randomly. The effectiveness of this ap-
proach is shown in Fig. 2 where the measured anisotropy
ratio AR =e¢,, /e, =€, /¢, is graphed as a function of
€,, for the woven glass PTFE and RT/Duroid random
fiber PTFE substrates [65]. Clearly there is considerable
reduction in anisotropy when a random rather than an
ordered orientation of the impregnant glass fiber is en-
forced in the PTFE base material. Where anisotropy is not
accounted for analytically, low ¢ composite substrates with
randomly oriented filling to reduce anisotropy should re-
sult in more successful designs for microwave printed-cir-
cuit antennas. On the other hand, high ¢ soft substrate
materials which are useful for microwave integrated cir-
cuits may exhibit considerable anisotropy even for random
orientation of the filling substance. This is readily observed
if a linear, albeit arbitrary, extrapolation of the random
fiber-filled PTFE substrate curve is constructed. Such an
extrapolation indicates, with €, =¢,, =16 and €,, =10, an
anisotropy ratio of 1.6, which is perhaps high. The example
shows, however, that for high € soft substrates which are
impregnated with another material matrix, anisotropy is
not negligible and should be accounted for in the develop-
ment of high-accuracy design procedures.
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IV. QUASI-STATIC METHODS

A full-wave analysis of integrated-circuit structures (such
as microstrip) on anisotropic substrates involves the devel-
opment of guided waves in terms of hybrid modes. A much
simpler approach is to consider that the structure supports
a dominant TEM mode, an argument especially valid at
low frequencies. Under the assumption of a dominant
TEM mode, a simplified design procedure evolves in a
rather straightforward manner, since the guided-wave field
components can be derived from the solution to Laplace’s
equation.

The design parameters of the microstrip structures of
Fig. 1 are the characteristic impedance Z, and effective
dielectric constant €.;. These parameters are defined for
nonmagnetic substrates by

P

oy C.C

where ¢ is the speed of light in vacuum, C, and C, denote
the capacitance of the strip conductor in the absence and
presence of the substrate, respectively, and e, is the
effective dielectric constant of the structure. The compu-
tation of C, or C, is obtained from the definition C, =
Q./Vy, (r=a or r=s), where V is the potential of the
strip with respect to ground. The total charge Q is given as

0= [ p(x)dx (22)

— W,

and €etf = Cs/Ca (21)

where p,(x’) is the unknown charge density on the strip. It
is clear now that the central problem of a quasi-static
method is the determination of p,(x). If p.(x) is known,
then the potential at any point (x, y) is given by

6.0 0) = [ 0 ()G, (x =",y = H) v (23)

where G,(x — x’, y— y’) is the Green’s function pertinent
to the boundary-value problem. On the conductor strip
(y=H, |x|<w/2, |x|<w/2), ¢(x, H)=V, and therefore

2
Vo= [ )6, x )
" —w/2

(Ixl<w/2, |x|<w/2). (24)

This is a Fredholm integral equation of the first kind to be
solved for p,(x"). The Green’s function G (x — x’, y — y') is
obtained by considering Laplace’s equation for the given
boundary-value problem. In the anisotropic medium,
Laplace’s equation is obtained from v-D=0, D=¢-E,
and E = — V¢, in the form

v-[éve(x, y)] =0. (25)
Equation (25) can be solved by the finite differences tech-
nique [4], variable substitution [66]-[71], or by Fourier
transform methods [27], [72], [73]. The method is easily
extendable to the characterization of coupled microstrip
lines, as those shown in Fig. 1. This is readily achieved by
composing the solution in terms of even- (+V,,V,) and
odd- (+V,, — V) mode excitation of the coupled lines (see
Fig. 1(f)). Under this scheme, the even- and odd-mode
impedances, and the effective dielectric constants are de-
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fined as
(. e’
ZO = {e} - €epr = {e} (26)
c\fcl? c{s"} ¢’
where

cleh_olidy olo) =f:/f+“’p{f’}(x') . (27)

In addition, p,{ «e»}(x') is obtained by solving the integral
equations

1= £i;2+wp{r2}(x’)G£Z} (x=x")dx’

(28)

where

G x—x)=G(x—x)+G(x+x'+5) (29)

and

GOx—x)=G,(x—x)—G(x+x'+5).

(30)

The even- and odd-mode excitations are equivalent to
erecting magnetic and electric walls, respectively, on the
x = 0 plane. The single-strip case can be obtained from the
even-mode excitation as s/H — 0.

Various quasi-static design procedures have evolved for
the determination of Z, and e.. These procedures are 1)
finite differences, 2) empirical, 3) method of moments, 4)
coordinate transformation (variable substitution), and 5)
variational methods. Each of these procedures will now be
presented and their advantages as well as limitations dis-
cussed. ’

A. Finite Differences

The finite differences technique has been employed to
obtain design parameters for microstrip without cover on a
sapphire substrate [4], [5]. The € is assumed diagonal, and
therefore Laplace’s equation becomes

Pory) ,  Pelxy) _
2 1y 2
dx dy

Ixx 0 (31)
where i =1,2 denotes the region of validity. At the inter-

face between the two layers, the tangential electric field
and its gradient must be continuous and

%0, (x, H) 0%,(x, H)
= 32
dIx? dx? (32)

is obtained. In addition, the normal D component is
continuous, i.e.,

¢, (x,H) do,(x, H)
T (33)

If the grid shown in Fig. 3 is considered, then by the
relaxation method, the potential at 4, ¢,, can be obtained
in terms of the potentials ¢,5, ¢,, ¢,p, and ¢,,. Now the
finite difference equation can be derived in its general form

€1yy 2yy

851
I I "
Exx2 eyy"’
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cxx1 ny1
C
e — = — = - = = A
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I {
|
L Y .
™ K2

Fig. 3. Rectangular grid for application of the method of finite

differences.

by eliminating derivatives in the previous equations, i.e.,
1
5 ( €2xx + €1xx)(¢iB’ + ¢1D) + €2yy‘1>iE + €1yy¢tC

- (€2xx + €1xx + €2yy + Elyy)¢i.4 =0. (34)

There are three regions where this generalized finite dif-
ference equation applies and where it takes distinct forms.

1) Anisotropic Region 1 (0 < y < H): In this region,
=€1,,» €252 = €145, and (34) becomes

&x(P1p+ d1p)+ Eyy(¢lE +¢10)~2(e €y, )by, =0.
(35)
2) Interface (y = H): Here the top points of the grid are
in air, and therefore ¢, =¢,,, =1. In addition, by writing

€lax = €xxs €1yy =€y D14 =Py =g G18=P2p= 95 P1p
= ¢, , = ¢p, the equation reduces to

€2y

1
5(1‘*' € ) (b5 +dp)+ g+ €,91c
—(2+¢,,+e,)0,=0. (36)

3) y> H: The entire grid is in the second region, which
is assumed to be a vacuum, and therefore €;,, = €;,, = €5,
=¢,,, = 1. The difference equation is simplified now into

Grpt Pret Gopt Grp—40,,=0. (37)

The microstrip capacitance may be computed using the
definition

C, =eoffse,,E,, ds (38)

where the subscript # denotes the direction normal to the
strip. Thus, under the strip €, =€, and in the air region
e, =1. The choice of ¢, at the strip edges (substrate—air
interface) is dictated by the coefficient of the term ¢ + ¢,
in (36), ie., €,=(1+¢,,)/2. In applying the relaxation
method, an overrelaxation factor of a=1.8 has been as-
sumed [4]. The grid is established by choosing the substrate
thickness H = 4N, where N is the number of grid points. A
zero potential boundary is assumed at x = +10H(+40N)
and at y=0 and y=S5H(Q20N). Using this scheme; the
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capacitance is computed iteratively until the value changes
by less than 0.1 percent. The final asymptotic value of C,_
is subsequently obtained by extrapolation [2], [4].

For w/H =1, the asymptotic capacitance value C,, is
reached quickly, i.e., the finite differences method con-
verges rapidly. When w/H <1, however, the method con-
verges very slowly and it becomes increasingly costly to
determine C,. The evaluation of C,, proves more dif-
ficult, even over the range of w/H >1. An accuracy of 0.5
percent is estimated [4] in computing C,,, when w/H =
0.125 with N=12. With w/H =9, the method converges
rapidly but the result is sensitive to box size (the estimated
error for the range is stated to be of the order of 0.5
percent [4]).

This method suffers from sensitive convergence prob-
lems depending on the w/H range and box size. Even
though the method is theoretically extendable to treat
coupled lines, the computer cost to obtain desirable accu-
racy would be prohibitive. In fact, the method was not
found accurate enough to obtain Z; and e [4] by direct
computation of C, and C,. Consequently, an important
equivalent permittivity e,., was defined as that for iso-
tropic substrate permittivity, which yields the same Z; and
€.r [4] as the anisotropic layer. The parameter e,., is
computed by using the method of finite differences from
the definition

Csoo — Cboo

€req €b‘*_(ec €b)( Ccoo—Cboo ) (39)
where ¢, and e, are the isotropic permittivities above and
below the anticipated ¢,., (Cps C.,, are the asymptotic
capacitance values for the cases corresponding to €,,¢€,).
The behavior of ¢,., with respect to the linewidth ratio
w/H as obtained by the method of finite differences
through the use of (39) is shown in Fig. 4(a) for a sapphire
substrate [4].

B.  Empirical Methods

In order to obtain a design method for microstrip on a
sapphire substrate, it is possible to utilize the results ob-
tained for €,,, with the method of finite differences and

develop an empirical design approach. To this end, the
empirical formula

1.21

2
1+0.39[log(%)]

€eq =120 (40)

has been developed [4]. The accuracy of this formula has
been estimated to be +0.5 percent in the range 0.1 < w/H
<10.0, and it may be used with existing methods [74], [75]
for microstrip on isotropic substrates to yield design graphs
for €,., and Z, as shown in Fig. 4(b) [4]. The accuracy of
Z; obtained in this manner is reported to be 4 percent for
w/H = 0.1, and it is claimed that it improves to 0.5 percent
when w/H =1.0 [4]. These accuracy estimates have been
found actually to be on the conservative side. A quasi-static

method of moments solution indicates that (40) yields a
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11.69 o
-
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(b)
Fig. 4. (2) €. versus w/H. (b) Characteristic impedance Z, versus
w/H.

better than 0.4-percent accuracy for 0.1 < w/H <10.0, while
the efror in Z is less than 1 percent for the same range in
w/H. The empirical formula given for ¢, is simple and
useful but it suffers from lack of generality, as it applies
only to sapphire substrates.

C. The Method of Moments

The method of moments [76] has proven to be a very
useful numerical technique in solving a variety of engineer-
ing problems in electromagnetics. It will be adopted here to
obtain the total charge per unit length for a single line, and
the even- and odd-mode total charges for coupled micro-

strip lines. The unknown charge density p,{Z}(x) is ex-
panded into a series of the form

oo )= éa{f}fm

where { f,(x)}, n=1,2,3,---, N, is a set of known basis
(expansion) functions, and the «, are unknown coeffi-
cients. Substitution of this expansion into (28) yields the
following pair of integral equations for the even- and

odd-mode unknown coefficients a,{ Z}:

(41)

1= ) a{rl‘e’}'/;s/22+wG{z}(x—x')fn(x') dx’. (42)

n=1

At this point, another set of known functions {w,(x)},
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m=1,2,3,---, N, (the testing functions) is selected and the
inner product is formed with both sides of (42), i.e.,

(1w (x)y = gla{f}

{0 770w ae)

(43)
where the inner product is defined by
, s/2+w
@y = 1w dv. - (49)

Equation (43) can now be written as

plo) gla{f}g,{ni} (45)
where
)= 1)) (46)
and

st =< ). 726 (= £, dx'>
s/2
(@)

or in matrix form

[B.]=[gmm]la,].

Upon inversion, the coefficients a,, are

[a,]=[gma] '[Bn]- (49)

The total line charge per unit length finally takes the form

RIS SN /A PR

N=1 s/2

(48)

and therefore the even- and odd-mode capacitance is C { Z}

= Q{ f;}, since V{ «e»} =1. These capacitance values are
e e

subsequently employed to determine Z { o} 0’ e{ o} o 2nd

u{ f»} - The single-line results can be readily obtained by
allowing s/2 — 0 in the formulation for the even mode.
Recognize that C, for a single strip = 2C, for coupled lines,
Z, for a single strip = 3Z§ for coupled lines, and w/H of a
single strip = 2w/H for coupled lines. A significant feature
of the method is the choice of expansion and testing
functions. These functions are critical both in the complex-
ity of analysis as well as rate of convergence. Often the
choice {w,(x)} = { f,(x)} is made; this selection of testing
and expansion functions is known as the Galerkin method
[76]. For the problem at hand, { f,(x)} = { p,(x)} is cho-
sen where { p,(x)} is a set of pulse functions defined by

1,x,-A/2<x<x,+A/2

Pu(x) =P, (x—x,)= O,x<x,-A/2, x>x,+A/2
(51)
and A= (w/H)/N. Furthermore, the testing functions

{w,(x)} are chosen as w,(x)=8(x—x,). the point-
matching method, with x,, = A(m —1/2). N denotes here
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the number of subsections the metallic strip is divided into.
e
Finally, the g{ o} ., atrix elements reduce to

el e
x,~8/2

(52)

This approach applies to a variety of cases.

1) Microstrip on Anisotropic Substrate with Optic Axis
Misalignment: It is assumed that the principal axes (§, ) of
the anisotropic substrate form an angle 6 with respect to
the microstrip coordinate system (x, y) [77] (see Fig. 7).
The elements of the relative permittivity tensor are given in
the microstrip coordinate system by

_ 2 -2
€,x = €££COS 0+c,ms1n 0
- 2 . 2
€, = €z SN 0+c,ms1n ]

(53)

€y =€, = (€ge— €,,)sinfcos f

and

€ZZ = eZZ M
To proceed with the method of moments, the Green’s
function is obtained [27] by solving the boundary-value
problem for the potential functions ¢,(x, y) and ¢,(x, y).
The potentials must satisfy Laplace’s equation and the
pertinent boundary conditions.

In Region 1:
3%, 3%, %,
€x e +2¢,, Gxdy +e,, 7y = 0. (54)
In Region 2: ‘
32 2
92 0% (55)
ax*  3y?
The boundary conditions are
$1(x,0)=0 (56)
é,(x,B)=0 (57)
¢1(X,H)=¢2(X,H) (58)
and
3¢1(x, y) e 39,(x, y) _ 39, (x, y)
yx Ix »y dy - ay y=H

- ?a(x —x") (59)

where p, is the line of charge at x = x’, y = H, generating
the potentials ¢,(x, y) and ¢,(x, y). This problem can be
solved by using a Fourier transform in x and integrating
the resulting ordinary differential equation in y. The trans-
form potential in region 1 is found to be

3 P exp[— j¢(y — H)]
9108 ) = 2 ¥ Tab coth (SOH) +coth (§H»)]

sinh ({8y)
smh(cor) (0
with
2712
B T Y _ _B_
8—[6” (fyy)] a=¢,, and » Vi 1. (61)
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After deriving the inverse transforms of ¢, and ¢,, the
Green’s function pertinent to the characterization of single
and coupled microstrip is obtained from either ¢,(x, y) or
¢,(x, y) by letting p,=1 and y = H. The Green’s function

is
1 &
27750f @

— o0

cos[§]x — x7]
¢ [@8 coth (¢8H ) +coth ({Hv)]
(62)

G(x—x)=

from which G{ ;}(x — x') is obtained by considering (29)

and (30). The elements of the [gi"; }] matrix are derived in
the form

(.o o)l 5]
Bmn” ™ 7eq Jo ¢?[ad coth (3HY ) +coth (vHE)]

T

The upper limit of integration in (63) is chosen as §, =
max(A4/8, A/v), where A is determined from tanh(A4) =
1.0 (for tanh(A4) = 0.999, A == 5). This value of A results in
the negligible error of 0.009 percent. The Green’s function
can also be written in the following series form by consid-
ering analytic continuation and the Cauchy residue theo-
rem [28]:

Glx-x)ml § __ opl-ulx-x]
€oH 75 v, [abcsc? (v, 8H )+ v csc? (v,Hv)]
(64)
where v, is the /th root of the transcendental equation
sin[v,(8 +»)H]+ Msin[v,(v—8)H] =0  (65)
with
_ad—1
T ad+1”

For this representation, the matrix elements are given by
. {o} 2 & 1
" eoH [Ty v [ad?esc? (v, 6H )+ vesc? (v Hv)]

v,A
U2 exp L w43, 451

1 ——exp[— v,%] +sinh|
X v,A

sinh ( T) exp[—v|x,, — x,|}£exp[ — v |x, + x, + 5|]

(66)

where the upper form is valid for x,, = x,, while the lower
is for x,, # x,,.
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Computations have been carried out for single and cou-
pled microstrip lines with a convergence accuracy better
than 0.5 percent (any desired convergence accuracy is
obtainable by increasing the number of subsections N).
The method of moments has been compared with other
techniques for microstrip on isotropic substrates. The
Bryant and Weiss approach [74] agrees well with the method
of moments (to within 1 percent) except for very small
linewidths where for coupled lines a discrepancy on the
order of 3.5 percent is observed for the odd-mode imped-
ance (w/H = 0.1, s /H = 0.1). It appears that when w/H <
0.2, the accuracy of the Bryant and Weiss results for
coupled lines is somewhat questionable due to a coarse
subdivision of the lines [74]. In addition, the increase in
error for small linewidths may be due to the sensitivity of
the finite differences method to mesh size.

The Finite Differences—Capacitance Interpolation
(FD-CI) procedure (which includes the incorporation of
the Bryant and Weiss algorithm) has been compared against
the method of moments for a single microstrip line on a
sapphire substrate. The method of moments is used in two
computations whereby in one case the tensor permittivity €
is involved (MMA), while in the subsequent case ¢, is
employed (MMEI). Table II summarizes the results for this
comparison. For the method of moments, the geometry of
Fig. 1(b) is considered with B/H =5.0 and B/H = 20.0.
The case of B/H = 5.0 is chosen since the empirical for-
mula for €, is derived in [4] for the equivalent box size of
B/H =5.0. Table II indicates that when B/H = 5.0, the
percent error is considerable when the FD-CI procedure is
compared with the method of moments. On the other
hand, when B/H = 20.0 (essentially an open structure), the
agreement is very good. This may be due to the possible
use in [4] of the Bryant and Weiss algorithm for an open
structure. The method of moments quasi-static results
shown in Table II have also been verified with excellent
agreement by considering the low-frequency limit of a
dynamic solution [56] for the geometry of Fig. 1(c) with the
proper dimensions.

An investigation has also been carried out to determine
the error introduced when the anisotropic nature of a given
substrate is neglected and in addition to clarify the effect
of the anisotropy ratio (AR) on line characteristics.

Table III provides a comparison of results for Z, and
€. versus w/H for an Epsilam-10 substrate with e, =¢,,
=13, and €, =103. As Table III indicates, the error
increases for narrow linewidths. This is due to the fact that
the fringing field is not taken into account correctly when
anisotropy is neglected, an ommission which leads to erro-
neous calculation of the guided wavelength, resonant length,
and subsequently inaccurate equivalent-circuit represen-
tations. The method of moments yields a faster conver-
gence in computing e, than Z,. For 0.5-percent conver-
gence accuracy, the largest number of subsections needed
for a single line was N =16.

Table IV provides an understanding of the rate of con-
vergence on the UCLA IBM 3033 computer. The results
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TABLEII
COMPARISON OF FINITE DIFFERENCES (FD-CI) AND THE EMPIRICAL
TecHNIQUE (MMET) WITH THE METHOD OF

MOMENTS (MMA)
w/H Zy Z, % Error Z, % Error
0.125 97.095 917.76 0.68 96.982 0.80
97.858 0.1 97.752 0.01
1.0 45.845 46.60 1.62 45.765 1.79
46.569 0.07 46.439 0.35
9.0 9.651 10.17 511 9.634 5.27
10.143 0.27 10.126 043
w/H €esp €cp % Error €opt % Error
0.125 6.4048 6.522 1.80 6.4197 1.57
6.4924 0.45 6.5065 0.24
1.0 7.1699 7.391 2.99 7.1949 2.65
7.3633 0.37 7.3875 0.05
9.0 8.8135 9.718 9.31 8.8439 8.99
9.5671 1.55 9.5977 1.24
Upper data: B/H = 5.0; lower data: B/H = 20.0.
TABLE III
ERROR IN NEGLECTING ANISOTROPY— SINGLE LINE
Zy Z, €eff Cett
€=10.3 €x=¢,=13 %Error ¢=10.3 €. =¢,=13 % Error
w/H  isotropic €,,=10.3 in Z, isotropic €, =10.3 in €
0.1 105.3763 101.2740 3.89 6.1854 6.6967 8.27
1.0 48.0923 46.9167 2.44 6.8345 7.1813 5.07
2.0 32.7080 32.1597 1.68 7.2877 7.5384 3.44
3.0 25.0139 24.6982 1.26 7.6128 7.8086 2.57
4.0 20.3157 20.1101 1.01 7.8537 8.0151 2.06
5.0 17.1296 16.9846 0.85 8.0379 8.1758 1.72
7.0 13.0643 . 12.9792 0.65 8.2980 8.4073 1.32
9.0 10.5852 10.5243 0.58 8.4645 8.5628 1.16
All results within 0.5-percent convergence accuracy.
for a case of coupled lines (s/H=0.1, B/H =10.0) are TABLE IV
also summarized in Table V. The subscripts i and a refer METHOD OF MOMENTS CPU REQUIREMENT
to Epsilam-10 with anisotropy omitted or taken into IBM 3033
account, respectively. It is observed that the error is larger CpPU
A w/H N Zy €opr (seconds)
for the odd-mode characteristic impedance and €., than
for the even mode. The discrepancy in € is also shown in (1)'(1) 13 1%?‘;’33 2'(153321; 8‘232
Fig. 5. Further computations demonstrate that the error 50 16 17.0495 81724 0.885
increases as s/H decreases (computations for s/H =1.0 7.0 16 13.0352 8.4043 0.880
9.0 16 10.5705 8.5604 0.885

yield a 6.77-percent error in €y, which is lower than the
corresponding cases when s/H = 0.1). This is due to higher
intensity fringing fields between the lines for the aniso-
tropic than for the isotropic substrate. The coupled-line
algorithm required N =32 for the desired convergence
accuracy (5.39-s CPU) with the odd-mode converging more
slowly than the even mode.

Equalization of even—odd-mode phase velocities is a goal
for improving integrated-circuit performance such as the
directivity D of directional couplers [77], [78]. In theory,
anisotropic substrates can equalize the even- and odd-mode
phase velocities for coupled microstrip without a cover, but
the required AR is not realizable with known substrate
materials. On the other hand, if a cover is used, the

requirement v, =v, is possible for practical isotropic as

B/H =100, Fig. 1(b). For 0.5-percent convergence

accuracy. €,, =¢€,, =13, ¢,, =10.3.

well as anisotropic substrates. Fig. 6 illustrates the behavior
of e, and Z; for coupled lines with AR >1 (AR =1.26
for Epsilam-10), AR =1 (isotropic substrate with € =10.3),
and AR <1 (AR = 0.89 for sapphire) versus B/H. Equali-
zation of phase velocities is achieved in all three cases.
Note, however, that the smaller B/H is, the more sensitive
the coupler design is to tolerance errors. Substrates with
AR >1 should be utilized where phase velocity equaliza-
tion and lower sensitivity to tolerance errors are desired.
Table VI summarizes eight different directional coupler
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TABLEV
CoMPARISON OF COUPLED LINE CHARACTERISTICS
OF EpSILAM-10 ISOTROPIC VERSUS
EPsILAM-10 ANISOTROPIC
w/H Z:, z:, % Error €, €, % Error
0.1 1583048 152.8358 3.455 6.3705 6.8346 7.285
1.0 63.4321 623986 1,629 73236 7.5682  3.340
3.0 292129 290010 0725 8.1945 8.3148 1.468
5.0 19.1763 19.0638 0.587 8.5260 8.6270 1.185
7.0 145671 14.4020 113 8.5867 8.7847 2306
w/H  Z, z, % Error €, €y, % Error
0.1 507637 48.1442 5160 56566 6.2889 10.054
1.0 26.6548 254680 4452 58253 63809 8.707
3.0 17.4429 169438 2.861 64355 6.8208 5.987
5.0 13.2197 129606 1960 6.9656 7.2468  3.880
7.0 10.5131 104271 0.724 7.4683 7.5920 1.656
s/H = 0.1, B/H = 0.5-percent convergence accuracy.
coff

10

1 2 3 4 5 6 7 wiH

Fig. 5. Error in €.¢¢ versus w/H when anisotropy is ignored. Microstrip
with cover: s/H=0.1, B/H=10.

€eoff
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7.0

8.0 -
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70
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40
g ___} odd
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Fig. 6. Effect of AR on ¢4 and Z,. Microstrip with cover: w/H = 0.7,

s/H =026
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Fig. 7. 10-dB coupler boron-nitride substrate directivity versus rotation

6. B/H=28,s/H=0095 w/H=16.

configurations on Epsilam-10, PBN, and sapphire sub-
strates. For each case shown, the parameters s/H and
B/H were varied to obtain Z¢ = 69.4 and Z§ =36 Q for a
10-dB coupler matched to a 50-& line. Whenever v, = vy,
the coupler directivity tends to infinity (D — o0); as shown
in Table VI, D=58 dB when B/H =280 for a PBN
substrate (vy =1.876 X10° m/s, v? =1.875X10% m/s). An
indication of the tight tolerances needed is clearly observed
when the substrate optic axis is misaligned with respect to
the microstrip coordinate system. Fig. 7 depicts the varia-
tion of D as a function of misalignment angle 8, where it is
observed that even for small 8 there is a significant reduc-
tion in coupler directivity {77].

2) Microstrip Couplers on an Anisotropic Substrate with
an Isotropic Overlay: Tt has been established that coupler
directivity improvement results on isotropic substrates when
an isotropic overlay is used [79]-[84]. An overlay will also
improve coupler directivity on anisotropic substrates by
relaxing the tight tolerance requirements on B/H. This is
particularly true for materials with AR <1 (e.g., sapphire).
For this design, phase velocities have been nearly equalized
but, more importantly, both impedance and phase velocity
curves vary quite slowly with increasing d/h (decreasing
B/H) as shown in Fig. 8. Table VII indicates the useful-
ness of the overlay in realizing coupler designs with com-
mercially available materials such as a 0.025-mil-thick sap-
phire substrate with a 0.050-mil alumina overlay. For this
two-layer structure (isotropic overlay on an anisotropic
substrate), the Green’s function is given by [78]

1 f°° cos [{[x — x'|] N(%)

G(X—X’)=2,n,€0 e g» D(g,)

g (67)

where

N(¢) =€, + ¢;coth({Hr) tan ({tH ) (68)
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TABLE VI

CoUPLER DESIGNS— SUMMARY
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’ Center
~ (10 m/s) (10° m/s) Directivity Freq.
Coupler w/H B/H s/H Z{ Z? vy u; (dB) VSWR  Coupling
Epsilam— Shielded 0.700 2.55 0260 69.0 359 1.207 1.210 43 <1.01 1002
Epsilam— Unshielded 0.800 > 6 0280 694 36.0 1138 1.204 18 1.03 ° 10.00
Alumina Unshielded 0875 >6 0260 692 359 1.150 1.286 12 1.06 10.04
Boron Nitride— :

Unshielded 1.850 >6 0.120 700 35.9 1.772 1.860 19.5 1.03 9.83
Boron Nitride— ‘

Shielded 1.60 2.80 0.095 693 36.0 1.876 1.875 58 <1.01 10.00
Quartz— Unshielded 1.830 >6 0110 692 36.2 1.708 1.886 13 105 - 1013
Sapphire— Shielded, )

90° Offset 0.690 220 0225 692 359 1.256 1.257 49 1.01 9.98
(€, =11.6,

€, =9.4)

Sapphire— .
Unshielded 0730 >6 0260 694 362 1.086 1.227 11 106 1012
(€ =94,
€,, =11.6)
2%,
<
Zo
OHMS %9
80
adwsec)
J1.00
50
40
30 4 .95
0 B 1:0 a 2.0 N — 3.0 4h
20dB COUPLER-SAPPHIRE/ALUMINA
(w/h=0.58, s/h=0.45, B/h =18.0)
. Fig. 8. 20-dB coupler-sapphire /alumina... .
. TABLE VII
COUPLER DESIGNS WITH AN OVERLAY
%108 X108 C Isol Dir
No. Type B/H -B/h d/h s/h w/h ¢ Z; v, z? v, (dB) (dB) (dB) VSWR
1. 10dB 86 120 040 045 055 99 694 .9905 363 .9885 10.1 447 346 1.01
(unshielded)
2. 20dB 34 62 0.80 160 0.58 99 555 9629 451 9646 19.7 573 376 1.002
(shielded) .
3. 20 dB 40 120 20 160 0.55 99 560 .9323 446 9333 18.9 61.3 424 1.002
(shielded) )
4. ~ 20dB 120 120 00 120 0.86 — 555 1068 453 1.180 200 224 24 102
(uncompensated)
5. 20 dB 60 180 20 160 055 99 561 9306 44.6 9333 18.9 /53.0 341 1.00

Sapphire ‘¢, = 9.4, ¢, =11.6. Alumina ¢, =9.9, ¢, =1.0.

(24
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Fig. 9. (a) Even- and odd-mode factor ‘/ etr - (D) Phase-veloc1ty ratio,
v°/v°. Reprinted by permission from IEE Electronics Letters [29].

D(¢) = tan($tH)

[52 +e5(€, € yy)l/zcoth(va)
‘ 12
-coth((‘ﬂ) §h)l
€yy

+e, [e3 coth({Hr)+ (e

.coﬂl((Zfi)l/th)].

The even and odd Green’s function components G{ 2} (x~—
x") are obtained by using (29) and (30)

3) Broadside-Coupled Microstrip Lines: Broadside-cou-
pled microstrip lines are considered as another application
of the method of moments. The even—odd-mode Green’s
function for the structure shown in Fig. 9 is developed into

1/2
wofyy)

(69)
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the séries form [29]

—ylx = x'|)
vh

G{i}(x__x,) eli ZCxP(

(70)

where v = B/h —1, v, is the /th zero of the transcendental
equation

e
tan —f—
€J’)’1
{ h (fxxz)l/z}
cotjv v
2 e)’}’z

)0‘«1e o

- (- p)[ b )/ (1)

“and p=z1 for even and odd modes, respectively. Incor-

poration of the Green’s function in the algorithm yields the
results [29] shown in Fig. 9(a) and (b) for broadside-cou-
pled lines on anisotropic Epsilam-10 substrate. The curves

shown indicate very small differences in Z { Z} o ,v{ 5} »
values between Epsilam-10 (e, =¢,, =13, €,,=10.2) and
AlSiMag 838 (e=10.2) substrates. For small linewidths,
however, the error increases when anisotropy is neglected
since the fringing fields between the broad51dc-coupled
lines is not accounted for correctly.

The method of moments proves to be a powerful tool in
the effort to obtain the quasi-static characteristics of single
and coupled microstrip lines on anisotropic substrates.
Multiple material layers, either anisotropic or combina-
tions of isotropic and anisotropic layers, can be incorpo-
rated into the algorithm easily by considering the ap-
propriate Green’s function for the structure. For the
assumed geometries in this section (no sidewalls), the
Green’s function can be obtained either in integral or series
form. For each structure, the series form as obtained by the
Cauchy residue theorem,  although it requires approxi-
mately 1/3 the computer time, is not as accurate as the
integral form. This is due to the error accumulation in-
curred during the location of the roots when (65) or (71)
are solved numerically. The results obtained for the char-
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acteristic impedance by incorporating the series form in the
method of moments algorithm are consistently 1-2-percent
low. The integral form should be used where very high
accuracy is required.

C. Coordinate Transformation Method

A simple approach to analyze the properties of micro-
strip on anisotropic substrates (without cover) may be
developed if the Green’s function given by (62) is examined
closely. The anisotropy and structural dimensions are in-
volved explicitly in the denominator term given by

2 \1/? €xx | Ex» 2\
e,y —€2,) rcoth{ § =22~ | =2 H
€y \

+ ezcoth(va)}.

If there is no top cover, Hv — 00 as B — oo, and therefore
coth({Hr) —1. The denominator may then be rewritten as

§[€eqcoth($H, )+ €,] where [68]-[71]
' 1/2
€eq = (Exxeyy E)zcy) (72)
and
‘ 212
H === & (73)
ed € €
yy Yy

This procedure reveals that the anisotropic substrate may
be replaced with an “equivalent isotropic” layer whose
permittivity and thickness are defined by (72) and (73).
This equivalent microstrip problem can then be solved with
an appropriate algorithm for isotropic substrates [74], [75].
A more rigorous justification of the “equivalent isotropic”
problem has been derived by considering the simple case of
a diagonalized tensor € (¢, , =€, = 0) [67), [68]. The coor-
dinate transformation

C (e \Y?
T=X v=y(ﬂ)
€y

yields Laplace’s or Poisson’s equation in the 7,v coordi-
nate system for a substrate characterized by

1/2 € 12
€, = (€,.6,,)" andHeq=(—xi) H.
yy
Furthermore, the relationship between ¢(x, y) and ®(r,v)
is readily established as ¢p(x, y) = @y(7,v) and

¢ p(x, y)/8y=(8¢Q(fr,v)/¢‘)v)g—;- where Q({,v) is the
point P(x, y) transformed into the (r,v) coordinate sys-

tem. Under this transformation, the boundary condltlons
at y = H are invariant [68], i.e.,

Ex=—@—E and D, =
ar

This method has been used in conjunction with the Bryant
and Weiss algorithm [74] but the results obtained [68] are
in error ranging up to 20 percent, due p0551b1y to erro-
neous adaptation of the algorithm.

Eoeeqa— = Dv' (74)
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This approach should be used with caution when micro-
strip with a cover is considered, since the term coth({Hv)
cannot be equated to unity. For this case, the denominator
of the Green’s function takes the form { [€eq coth(¢H )T
e, coth({H v)] and, strictly speaking, the concept of an
equivalent isotropic substrate is no longer valid. Neverthe-
less, an algorithm for isotropic substrates can still be used

with the extra care of proper entry for €., H,, and H.

D. The Image-Coefficient Method

An alternate approach, which also leads to the conclu-
sions of the previous section, is to obtain the Green’s
function by considering the method of images for aniso-
tropic media [30]. As a first step, Poisson’s equation is
considered with a unit strength per unit length charged line
source at x’, y’. For the moment, the entire space is
anisotropic and is characterized by a diagonalized tensor e.
Poisson’s equation takes the form [67]

9%G 3%G 8(x—x",y—y") :
Cxx )y 2 T T 5T T . (75)
dx dy €0

Transforming coordinates with 7= x/\/e \/j =y/\le ‘/~ ;,

and using the delta function property 8(ax) 8(x)/|al,

the equation is written as
39*°G = 3°G ___1

ar?  ? €t

S(r—1,v=v). (76)

X.Xeyy

This transformed Poisson equation easily yields the solu-
tion

1
2megee,

G(x—x',y—y)=

1

e - 2)

where, as before, €., = /e, . If the line source is now
placed at x’, y’ above an anisotropic half-space (see Fig.
10), then consideration of the boundary conditions at the
interface ( y = 0) and the reciprocity theorem {30] yield for
this configuration the solution

G(x—x",y—y")

(77)

P 1
2mege,, ’
o \/(x—X)+y yo)(eyy)
0 (78)
N 1 1 )
27e, \/(x— x')2+(y _ y,)z 27eg
-In 21 = | y=0 (79).
(G=x) 4 (=)
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Fig. 10. Imaging a line charge source (p,=1) over an anisotropic
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where
f= ]2y 80
N=y/¢ 7V (80)
yy
n=-y (81)
pr=1-K (82)
pr=K (83)
and
1—e,
K= 1. (84)
1+e

For the microstrip geometry (without cover), multiple
images result, just as for an isotropic substrate. Using
image theory for this structure, the Green’s function is
written in the form

1 o0
G — N = = Kn—l
(x x) 2we0(1+eeq) n§1
12 2
{4n2+ i—x—) H 4n2+——x+x }
He-q eq
-In . 2
2 [ x=x 2 [ x+x'
[4(n—1) +( i, )}[4(;1 1)°+ i ”
(85)
where
H =H, |
o €}"Y

This expression is identical to the Green’s function by the
method of images for microstrip on an isotropic substrate
[86] provided the isotropic layer is characterized by the
relative dielectric constant €., and substrate thickness H..
This series representation of the Green’s function con-
verges rapidly and it yields results for the microstrip capa-
citance per unit length with excellent accuracy when
adopted with an appropriate numerical method [30].

The theory of images is easily extended to obtain the
Green’s function for an electrooptic modulator structure,
i.e., a metallic strip conductor on an anisotropic substrate
of thickness H without a ground plane. This Green’s
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function is given by [30]

1
Gx—x)=—""7—=
(x =) 277(0(1+eeq)
2
2, [x+x’
- 4(n—1) +( H,
<Y K" 'In > (- (86)

n=1

H

4(n_1)2+(x—x )
€q
These series representations, for both the microstrip line
and electrooptic modulator structures, converge quite
rapidly and they have been adopted in the discretized
integral equation [30]

V=32 ["o(x)6(x~x) ax’ (87)

j=1"Y

where

x’—xj
R O<sx'<sw/2

p(x)=p,+(p1— P,)(x—:l_—x"
(88)

J

with
; — Y
x =%{1—(1—i—1) } j=1,2,3,--.m+1

(y=1,2,0r3). (89)

The expression given for p(x’) gives an excellent piecewise
approximation of the true charge density distribution for
0 < x" < w/2. The total charge on the half-strip is

0= fy’“p(X’) dx’.

J=1"

(90)

When the conductor is charged to 1 V, the lineal capaci-
tance is C =20Q.

The accuracy of this approach is remarkable. The error
(again comparing to the value obtained with conformal
mapping) for microstrip on isotropic substrates is quoted
as less than 0.0024 percent when w/H = 0.01 and less than
0.001 percent for w/H > 0.01 [30]. Similar accuracy is
observed for the electrooptic modulator case [30].

E.  Application of the Variational Principle

The variational principle is a powerful tool in that it
yields results with very good accuracy for a variety of
integrated-circuit structures. Furthermore, it provides up-
per- and lower-bound numerical results for the capacitance
of single and coupled printed strip conductors with arbi-
trary substrate parameters and conductor geometry. In this
section, the variational expression for capacitance is pre-
sented in the Fourier transform or space domain for a
variety of microstrip geometries, as well as for unshielded
suspended stripline, coupled slotlines, and coplanar wave-
guide structures on anisotropic substrates.

1) Fourier Transform Representation: The variational ex-
pression for the lower-bound computation of capacitance
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can be derived in the form [87], [88]

S=— [T a6 H) &

= 7m0t (91)

where 5(¢) and G(¢) are the Fourier transforms of the line
charge density and Green’s function, respectively, while Q
is the total charge per unit length. This variational expres-
sion can be rewritten as

1 1

g 2
—==— p g(¢,H)d 92
el [3(]73(¢, H) dt (92)
where g({, H) is given by the following expressions de-
pending on the structure under consideration.

Microstrip with cover:

1
2(§, H) = 93
& ) eof[eeqcoth(fHeq)+£2c0th(§HV)] (©3)
(usually €, =1). '
Microstrip without cover:
~ 1
g($. H) = (94)

€o¢ [eeq coth({Heq) + 52] '

Unshielded suspended stripline or coplanar striplines:
€eq coth({Heq) +1

eof [(1+ €c) +2e gcoth (§H, )]

The trial functions which are typically used to minimize
the error in the computation of C are

g5, H) = (95)

_fIxl o Ixl<w/2
o= s (56)
or
_ 1+ Rx/w), x|l <w/2
p(x) {o, xaw2 D

The corresponding Fourier transforms are

s _ 2l () [ 58)
© G LE)
and
-
2

) [COS(K_W)_ 2sin({w/2) N

sin® ({w/4)
3 w2 ] (99)

(§w/4)

The method is easily extended to include the even- and
odd-mode capacitance computation by considering the fol-
lowing representation for the Fourier transform of the
charge density:

ﬁ{i}(g) - 2fs/2+wp{5}(x)°°s {¢x}dx. (100)

s sin
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The Rayleigh—Ritz procedure has been employed with this
method to determine the unknown constants, the a,, in the
expansions [36]-[38]

M+1
pO(x)= X ax'! (101)
=1
and
M4+1
pO(x)= T a(w—x)""" (102)

i=1

For microstrip on an isotropic substrate without a cover
layer, with w/H > 0.5 and s/H > 0.5, the reported error is
less than 1 percent for the upper-bound even-mode char-
acteristic impedance and 2 percent for the odd mode.
However, for small s/H (less than 0.1), with w/H > 1.0 or
w/H < 0.1, the error exceeds 6 percent [37]. Large errors
result with this method for the case of microstrip with a
cover [38]

The trial functions given by (98) and (99) have been
considered to analyze the unshielded stripline on a
Lithium-Niobate substrate (Li-Nb-O;, €,, =28, €, =43)
[88]. The results obtained using the variational principle
have been found to be in error by 4-10 percent when
compared to the approach which uses image theory with
the numerical technique discussed previously [30]. The
corresponding formulation for even- and odd-mode
upper-bound capacitance computation is given by [36]-[38]

g 75t a4

where the trial functions for the potential may be chosen as
L
Z/ ai(d - x)—l’
{ Z } i=L
¢ (x)={L
N+1

Y b(x—d) ", x=s/2+w
J=1

(103)

0<x<s/2

s/2€x<s/2+w

(104)

with L = M +1 for even modes, L = M +2 for odd modes,
and d = (1/2)(s +w). The unknown constants @, and b,
may be determined with the procedure used for the lower-
bound computations. For isotropic substrates, the incurred
error is found to be 2 percent for the even-mode imped-
ance and 4 percent for the odd mode (by comparison with
the results reported in [74] for s /H » 0.5 and w/H > 0.5).
For smaller s/H and/or w/H, the error is substantially
larger.

2) Space - Domain Formulation: A variational representa-
tion for the capacitance per unit length can also be given
directly in terms of spatial coordinates, i.e., [12]

fw/zzp(x)dx

- W,

C=

w/2 fw/2
—w/2Y —w/2

G(x—x',y=y)p(x)p(x") dxdx’

(105)
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Fig. 11. Multiple conductor microstrip system.

It converges to the true value from the lower side. This
variational representation has been implemented to analyze
the properties of microstrip, inverted microstrip, and
coplanar lines with multiple anisotropic layers in a rectan-
gularly shaped shield [39]-[42].

The variational method can readily be extended to con-
sider the characteristics of the system of N microstrip lines
shown in Fig. 11. The conductor thickness may also be
taken into account [34], [35]. The potential of the ith
conductor is given for this configuration by

Z Z f ds, G s;,)qu(sl’,)

j=lp=1
with 1 =1,2,3,---, N. &, denotes integration on the pth
side of the jth conductor, M the number of conductor
sides (M = 4 for the rectangularly shaped strips considered
here), and s, the integration variable along the pth side of
the jth conductor. s,(s,) denotes x(x) or y(y’) depending
on whether the pth side is parallel to the x- or p-axis.
Lastly, ¢,,(s,) is the unknown charge distribution of the
pth side of the jth conductor and G(s,,s;) is the Green’s

function satisfying the Poisson equation. The total charge
on the jth conductor is

(106)

4

0,= L [, anls;) s} (107)

which may be rewritten as
QJ=ZZ<1’qu(sp)>j,p' (108)

;P

The inner product is defined here by
V(s,), W(s,)), , = fg ds,V(s,)W(s,). (109)
P

The unknown charge density on the pth side may be
written in terms of the following expansion:

My, p)

9,(s,)= X

k=-M(.p)

e, pYexp{ M, (j, p)s,}

(110)

where ¢, (j, p) are unknown coefficients and M, (j, p) are
known parameters on the pth side of the jth conductor.
Utilizing the inner product definition and subst1tut1ng (110)
into (106), the ¥, can be expressed as

N 4
=22 X
J=1p=1
M
X el pX6(s,51) e (M. 2)35 )0,
(111)
Subsequently, the inner product of V, with

exp{M,(i,r)s,} yields
Z E Z c(J, p)

Jj=lp=1lk=-M

SI',),GXP {Mk(j’ P)s; }>>tr,jp
(112)

(exp{ M, (i,r)s,}, V), =

(exp{M,(i, r)s,},(G(s,,

where

= [, [, @5 dspexp( M, (0, r)s,)

L 4

-G(s,,sl’,)exp{Mk(j,p)sl',}. (113)

In order to simplify notation, the following matrices are
defined, namely the column vector

[Y(m,i,r)] = [Cexp{M,(i,r)s,}. V)] (114)
and the square matrix
[T(m,i,r.k, j, p)I=[C Hir,jp).  (115)

These definitions enable (112) to be rewritten in the matrix
form
[T(m,i,rs k. j, p)][eulds )] = [Y(m, 1.r)]
(116)

which, upon inversion, yields the solution for the unknown
coefficients

[ee(s, p)] = [T(m, i sk, j, p)] 7 ¥ (m, 1, 7))
‘ (117)

The total charge on the jth conductor is finally obtained as

0- £, athnmen(ulirishy
S (118)

In view of the assumption that ¥, =1 and V= -+ = V.4
- =V, =0, the variational expression (105) is
rewritten for C,, = Q, as

4 2
(ﬂzyéaum)
0=—7 r—,ri lr4"
gégwm%ggihwdsumU)
red, PEZ,
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TABLE VIII
CONVERGENCE PATTERN FOR CAPACITANCE PER METER FOR MICROSTRIP ON SAPPHIRE
Gt as G+ 4y
U (2)=u, (4) u (1) = u, (3) (nC) (nC) C(nF/m)
0.0 0.6 +0.83, 0.01847 0.1832 0.2017
0.0 06 12 18 +0.55, £1.66 0.02109 0.1789 0.2000
0.0 1.0 +0.083 0.02093 0.1790 0.1999
0.0 1.0 +0.055, £0.17 0.10977 0.1812 0.2010

t/H=03, w/H=10, B/H=60.

This expression is useful in obtaining the effect of the conductor thickness on the propagation characteristics of
microstrip conductors [34], [35]. The Green’s function pertinent for this purpose is [34]

G(x—x’,)"')")=;%;fowcos[glxn_x"]sinh(g(B_y>))
”x”ySinh(M)cosh(g—H +sinh {_H)cosh(u)
> - - - % (120)
§(B—H) ¢H ¢(B—H)

nxnysinh(m-——)cosh(-gﬁ)+sinh(—)cosh(
n n, n, n,

X

where y_. =min(y, y'), y. = rhax(y, y), n,=ye,,, and

n,=\e,,.

A single conductor of thickness ¢ is considered presently
as an application of the just-outlined approach. On the
vertical sides ( p =1, 3), the charge distribution is expressed
as

M
7,(y)= X ealp)exp{u,(p)y}, p=13
while on the horizontal sides (p = 2,4), g is given by
M
g,(x)= X c(p)exp{ulp)x}.
k=—M

Table VIII demonstrates the capacitance convergence pat-
tern of this technique. Even with the choice of u; = 0.0, the
value of Z, is found to be within 5 percent of its conver-
gence value. An example of the dependence of Z, and v,
on t/H is shown in Figs. 12 and 13, for w/H =1.0 and
B/H = 6.0. Clearly, for w/H =1.0, the variation of Z, and
v, with t/H is a second-order effect. Convergence is
obtained, using this technique, with two or three u, points.
In addition, it has been determined that for increasing
values of w/H, faster convergence is achieved if the
parameters u,, are chosen as u, = H/w [34], [35].

3) Extension to Coplanar Waveguides: The variational
principle can be extended to yield an expression for the
capacitance of the coplanar waveguide (CP) in the form of
[89]

/'s/2+lw s/2+w

o /2 fowex(x)G(f;x—x’)ex(x’) dxdx’

C= 2
{jj/ﬂwex(x) dx} |

/2
(123)

where e, (x) is the unknown electric-field distribution

) §

I+eg, tanh({Heq) sin ¢x sin ¢x’
; .

across the slot aperture and

4
G5 x—x) = =21+

1
1+ ;:q tanh({Heq)

(124)
The aperture electric field is written as the expansion

e (x)=eo(x)+ kglakek(x)

g

L { 2x—s) }2]1/2 .

(125)

where

2(x—s)}

w

(126)

w

ek(x) = [

The Chebyshev polynomials T,{x} of the first kind are
used, and the parameters are calculated using the
Rayleigh—Ritz method. This technique yields results which
are identical to those obtained by conformal mapping
when N > 2 in the absence of the substrate, and it is
considered to be highly accurate when the anisotropic
substrate is included [89]. The variation of €. and Z,
versus #, as obtained by this method, are shown in Fig. 14
for a sapphire substrate (# is defined here as in (53)).

V. MODELING DISPERSION

The quasi-static methods described previously provide
solutions of limited validity since they do not account for
dispersive effects. Simple frequency-dependent formulas
based on empirical observation and curve fitting have been
derived, but they too are of limited value. They either
apply exclusively to a sapphire substrate [2], {4] or they are
not accurate enough for electrically thick substrates. Al-
though they may lack general applicability, these methods
and formulas offer the convenience of closed-form alge-
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Fig. 14. Effective dielectric constant €, and characteristic impedance
Z, versus 0.

braic expressions. For reference, then, some of these are
presented.

An empirical formula for the frequency-dependent effec-
tive dielectric constant for a sapphire substrate is given as

(5]

€req €0
Cott = €req — — - (127)
1+(—) [0.43f2 ~0.009/3]
Z, .
where ¢, is defined by (40) and e, is the static effective

dielectric constant. H is in millimeters and f in gigahertz.
This formula is reportedly valid with a +0.8-percent error
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over the frequency range 2 < f <18 GHz and for a char-
acteristic impedance value of 10 < Z, <100 @ [2], [5]. A
dynamic solution obtained by the method of moments to
within 0.5-percent accuracy [56] indicates that the error
estimate in using (127) is within < 3.3 percent for w/H =
0.5, <1.5 percent for w/H=1.0, and <2.5 percent for
w/H =35.0.

An approximate empirical formula which applies for
arbitrary substrate anisotropy and thickness has been de-
rived by combining two different dispersive models for
isotropic substrates. The effective dielectric constant is
defined as [90]

S A i 1,> 1,
(h+ 1]
Corr = 1 (128)
F, if 11<I—_,
2

where I; and I, are dispersive models for isotropic sub-
strates [91], [92]. I is expressed in the form

1 (i)2+ 1
VA
I= % (129)
= +1
7
with
1 \V2
votan ~! e,eq(:eo_E ) }
fk— . req e0 — (130)
277'H(1+ ﬁ)[ireq_eeo] /
For I,, the expression is
3,2
£) e
5
L= AXZ (131)
(7;) fe + 4w
with
Y%
fy: 12] 1 w2
4H (e, ~1) [§+(1+210g(1+ﬁ))]
(132)

In these definitions, ¢, is the equivalent relative dielectric
constant at zero frequency for an isotropic substrate on
which the microstrip line (w, H being identical to the
original line) has the same effective dielectric constant €,
as the latter line at zero frequency. Also, v, is the speed of
light in vacuum.

The accuracy of the €., formula given by (128) is very
good for large w/H and arbitrary H/A,. When H/A >
0.03 and w/H <1.0, however, the error for a sapphire is of
the order of 4 percent. Clearly, for cases of arbitrary
anisotropic substrates, a more precise accounting of disper-
sion is required. Rigorous solutions to Maxwell’s equations
addressing that need will now be presented.
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ﬂA. The Transmission- Line Matrix (TLM) Technique

The TLM method, as it applies to anisotropic substrates
[44] provides a solution to Maxwell’s equations in the time
domain by determining the impulse response of an equiv-
alent distributed transmission-line network that models the
given waveguiding structure [44]-[49]. The equivalence is
obtained in terms of ideal two-wire transmission lines of
length A/ connected in a three-dimensional lattice arrange-
ment. At the transmission-line crossings, shunt or series
nodes are formed which enable accurate characterization of
the propagating medium with the incorporation of open- or
short-circuited transmission-line stubs at each node. These
transmission-line stubs are most instrumental in that they
model the relative permittivity, conductivity, and relative
permeability of the substrate. In the analysis, Kirchoff’s
voltage and current laws are applied to the equivalent
three-dimensional network to yield a set of equations iden-
tifiable as an analog to Maxwell’s equations (as they apply
to the guiding structure).

The equivalent three-dimensional circuit is a periodic
structure and it therefore exhibits the inherent passband
and stopband frequency response characteristic of periodic
networks. The upper frequency cutoff f, of the TLM
model is the highest frequency of the lowest passband and
it is determined by the mesh size Al It is possible to
increase f, by choosing a smaller mesh size (f, = oo as
Al 0). Moreover, for a given frequency having a finer
mesh or smaller, Al increases the model accuracy but at
the expense associated with rapidly increasing computer
run times and storage requirements. Distinct advantages,
however, such as simplicity, versatility, and direct modeling
of the physical waveguiding processes make this method a
very useful engineering tool.

The TLM technique will be adopted herein to solve
Maxwell’s equations in the general form given by (7)-(19)
for the microstrip structure shown in Fig. 1(c). A gener-
alized node is shown in Fig. 15(a). It consists of three shunt
and three series nodes Al/2 apart from one another.
Permeability is modeled by a short-circuited stub attached
to each series node, while an open-circuited stub attached
to each shunt node models permittivity. In addition, con-
ductivity may be modeled with an infinite or matched line
connected to each shunt node, and referred to as a loss
stub. The coordinate orientation of the stubs denotes the
particular component of the diagonalized tensor modeled
by the stub, while the dashed lines in Fig. 15(a) are guide
lines (and not equivalent transmission lines or stubs) [44].
The transmission-line representation of this generalized
node is shown in Fig. 15(b). It illustrates the three-dimen-
stonal formation of shunt and series nodes (for clarity,
stubs are not included in this figure). The voltages at the
three shunt nodes represent the E-field components, while
the currents at the three series nodes are associated with
the H-field components in the three coordinate directions
as shown in Fig. 15(b). Guide discontinuities and substrate
material properties can be modeled with the appropriate
choice of the stub electrical parameters (admittance or
impedance). A better understanding of this may be at-
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Fig. 15. (a) A generalized three-dimensional node. (b) Three-dimen-
sional node.

tained by considering a series and a shunt node individu-
ally. The series node shown in Fig. 16(a) is analyzed by
considering the equivalent lumped network schematic of
Fig. 16(c). The short-circuited stub of length Al /2 is in the
%-direction and its input impedance is Z; =
JZ. (L/C)*tan(wAl/2c), where Z,, is the line char-
acteristic impedance. If wAl/2¢ <1, then Z, = jwl/,
where L' = (Z,,, Al /2) L. Kirchoff’s voltage law then yields
for this series node

dv, v, Z..\di,

3y —E—-—ZL(I'F 4 ) %%
This network equation is an analog to Maxwell’s equations.
Upon identification of v, with &,, v, with &, and i, with
M, it follows that (133) and (14) are equivalent, provided
[44], [45]

(133)

po=2L (134)
and
44 7
R (135)
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(a) TEM lines connected in series. (b) A generalized series node.
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Fig. 16.

A similar analysis for series nodes in the xy- and xz-planes
yields upon application of Kirchoff’s voltage law

dv,  du, Z,,\ di,

a_x_b?‘—u(” i )W (136)
and

dv, dvy, Zyy aiy

7;“‘9‘;—““(”7)? (137)

Comparison with Maxwell’s equations indicates the equiv-
alences v, =&, v, =&, i,=#,, and i, =5, hold if the

yr ¥x x?
following identifications are made:
4+ Z,,
=7 (138)
and
4+ Z
By =" (139)

Continuing, the yz-plane shunt node shown in Fig. 17(b)
is considered. In this case, the open-circuited stub (for
permittivity) and the loss stubs (for conductivity) are in the
X-direction. The input admittance of the open-circuited
stub is given by Y, = jwY, CAl/2(wAl/2c < 1), so that
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Fig. 17. (a) TEM lines connected in parallel. (b) A generalized shunt

node. (¢) Shunt node lumped network representation.

the equivalent capacitance is C'=Y,,CAl/2, while the
total node capacitance is 2C(1+Y,, /4) Al. Application of
Kirchoff’s, current law at node A yields
afz al)’ Gxx [ },xx d
-@—E‘—(—‘“+2C 1+ ] )Ux. (140)

Z,Al 4 or

A similar procedure in the other two planes produces the
equations

di, 9i, G,, - Y,]9

E——ax—-(ZOAI'FzC_l"‘T EI- v, (141)
and

di di G [ Y _ ]34

x| 2z 2z | O

o 3y (ZOA1+2C_1+ 4 ](?t)vz' (142)

Comparing (140)—(142) with Maxwell’s equations suggests
the following parameter equivalences: &, =v,, # =i,
H,=i,, 0, =G, /ZyAl, ¢=2C, and €,, = (4+7,,)/4
Similarly, 5, =i,, &,=v, 0,=G,,/Z, Al e, =(4+

Y,)/4 and &,=v,, 0,,=G,,/Z,Al, and ¢,, = (4+7,,).
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Fig. 18. Continuity of tangential fields across a dielectric boundary.
The previous discussion dealt with the derivation of the
equivalent distributed circuit which models Maxwell’s
equations in the point form. Thus, the equivalent circuit,
which is an analog to the differential form of Maxwell’s
equations, is obtained in terms of a generalized node with
three shunt and three series nodes. A permittivity and a
conductivity stub are connected to the shunt node, while a
permeability stub is connected to the series node to com-
plete the model. With this, a propagating medium can be
represented accurately. By connecting appropriately char-
acterized generalized nodes in a three-dimensional mesh,
the individual homogeneous regions of the actual wave-
guiding structure can be modeled. To complete the model,
boundary conditions need to be incorporated. A short
circuit (electric wall) is obtained by shorting out the shunt
nodes in the plane of interest, while an open circuit (mag-
netic wall) is achieved by open circuiting the appropriate
series nodes in the plane of interest. Dielectric interfaces
are dealt with in terms of the continuity of tangential field
components. An example [44] is the xz-plane boundary
between two dielectric materials. In this case, elementary
transmission-line sections connect a generalized node in
one medium to a generalized node in the second medium
as Fig. 18 indicates. If the tangential field components for
E , E, H, and H, are considered on either side of the
boundary, then the following equations are obtained:

JE, A
dy !

JE, A
dy !

E,=E + (143)

E, =E, +

X2

(144)

s, Al
dy

d
H, =H, + (145)

dH,
H, =H, +—2Al (146)

dy
These relations are obtained from the correspondence of
the electric field at a shunt node to voltage, and of the
magnetic field at a series node to current.
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The TLM method predicts, as stated previously, the
impulse response of a given network. According to this
technique, an impulse excitation takes place at some circuit
location. It propagates throughout the transmission-line
sections scattering at the shunt and series node locations.
The manner according to which the impulse is scattered at
a given node is prescribed by the scattering matrix perti-
nent to that node. The scattering matrix of a shunt node is

1111 7y,

Sy

[S]shunt=? 11 1 1 Yll _[I] (147)
1111 7%,
1111 %

where Y =4+7),+ G, Il denotes X%, $9, or 5%, and [1] is
the unitary matrix. For a series node

-1

-1 1 1 -1
2 1 -1 -1 1 1
[S]series':—z— 1 -1 -1 1 1 +[I]
-1 1 1 -1 -1
-Zy Z, Zy, ~Z, -2,

(148)

where Z=4+ Z,.

The voltage—current analog of any electromagnetic field
of interest can be excited by imposing the properly weighted
voltage and current impulses at the node points of the
equivalent network. These impulse fields can be followed
as they travel and scatter through the network, and allow a
determination of the field value at any point of the guiding
structure by way of the analog and the corresponding
network point. The response is obtained at the point of
observation as the collection of the impulse amplitudes
incident at that point. Fourier transformation of this result
yields easily the Fourier domain response.

The TLM method just described has been applied to
determine the dispersion characteristics of single and
coupled microstrip lines, as well as of microstrip discon-
tinuities on an anisotropic substrate as defined by a di-
agonalized permittivity tensor [44]. The geometry under
consideration is illustrated in Fig. 1(c). Due to the even
symmetry in x, a magnetic wall is placed at x = 0, and as
such the input data involves boundary conditions which
take the form E,=E, =0 at y=0, B, E,=E =0 at
x=a, H=H =0at x=0, and E,=E,=0 at y=H,
0 < x <w/2. Shorting planes are placed 2L, units apart
along the length of the microstrip transmission line to form
a resonator. At the lowest resonant frequency of this
cavity, the quantity 2L, corresponds to half the guided
wavelength of the fundamental propagating mode on the
microstrip line, thereby yielding the dispersion characteris-
tics of the line (i.e., at resonance 8 =7/2L,).

Results for the particular case where w/H =3, Al=H,"
and B/H =6 are shown in Fig. 19. For these computa-
tions, one thousand iterations were used (only a 0.01-per-
cent change in resonant frequency is observed if more
iterations are used [44]). The difference in the values as
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Fig. 19. Dispersion diagram for single microstrip on sapphire substrate
w/H =30, H=AL

compared to an isotropic substrate case reported in the
literature [50] are 7 percent for H= Al, improved to 2
percent for H =2 A/, and finally 0.5 percent if H=3A/ is
chosen. A crucial point in convergence enhancement is, in
this case, in a priori knowledge of the fundamental-mode
field distribution. It has been found that a more accurate
representation of the fundamental mode results if E, is
excited at all nodes lying directly below the strip conductor
and E is excited along the edge of the strip.

The TLM method has also been used to predict the
dispersion properties of microstrip discontinuities [44] such
as those shown in Fig. 20. An example of dispersion for
coupled microstrip on sapphire is shown in Fig. 21. There
the dimensions are: ¢ =17Al, H=3Al, B=6Al, s=3Al,
w=23A/ and A/=0.5 mm.

The TLM technique as described is a very simple and
versatile method which is easily adopted to obtain the
dispersion characteristics of single or coupled microstrip
lines, as well as of microstrip discontinuities on anisotropic
substrates. An important disadvantage of the technique is
the need for a priori knowledge or very good initial gyess
of the dominant-mode field distribution to enhance conver-
gence. In addition, the accuracy is dependent on the num-
ber of iterations used to ensure convergence for the selected
mesh size. Obviously, the finer the chosen mesh size, the
more accurate the solution, at the expense of computer run
time and memory storage requirements.

B. Fourier - Domain Methods

The frequency-dependent characteristics of integrated-
circuit structures on anisotropic substrates can be analyzed,
in addition to the transmission-line matrix method, by
solving Maxwell’s equations with Fourier-spectrum tech-
niques. The electromagnetic-field components may be ex-
pressed either in terms of a continuous or a discrete
Fourier spectrum depending on whether the waveguiding

Frequency in GHz
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Frequency in GHz

Frequency in GHz
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edge-coupled microstrip (a =17A1, H=3A1, B=9Al, s=3A1, w=
3A1, Al = 0.5 mm, sapphire substrate).

circuit under consideration is an open or a closed structure.
Due to the inhomogeneity in the -dimension of the struc-
tures under consideration, the complete field solution is
obtained by the superposition of LSE and LSM modes. In
this section, methods of solution for microstrip, microstrip
with cover, microstrip in'a rectangularly shaped shield, and
the corresponding cases of coplanar waveguide and slotline
are investigated. The substrate is characterized by a di-
agonalized tensor €, while the material magnetic and con-
ductive properties are assumed isotropic (¢, =1, 6 = 0).

1) Continuous Fourier Spectrum — Microstrip and
Coplanar Slots: The dispersive properties of microstrip
with cover may be obtained by adopting the continuous
Fourier spectrum in conjunction with the Wiener—Hopf
method [51]. Structures such as microstrip with or without
cover, inverted microstrip, coupled ‘microstrip, coplanar
lines, and coplanar slots may be analyzed by combining
the continuous Fourier-spectrum field representation with
the equivalent network method of solution of Maxwell’s
equations [52]-[54].

a) Modified Wiener— Hopf method; Microstrip with
cover: For time-harmonic fields and propagation in the
+ 2-direction, Maxwell’s equations are simplified by allow-
ing /9t — jw and d/0dt — — jB. Further simplification is
obtained if the electromagnetic-field quantities £ and H
are written as the inverse Fourier transforms

o (x.9) =57 [ FE e

where &/ may represent E or H. With this substitution, the
LSE and LSM modes are expressed in the spectral domain
as follows.

LSE Modes (TE,):

(149)

A g‘j‘fﬁ i, (150)

= ool e

EzTEy = W );1“ y (151)
; 7 TE,

U +pr dy
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and
' ) _ a QHTE
e (153)
C+prdy
where H "> satisfies the wave equation
N i
3yy2 —[2+ 82— kAT =0.  (154)
Similarly, the following can be expressed. -
LSM Modes (TM,,):
. it(e,, /e,) JE™
E™ = Jg( w/ t) y (155)
¢2+pr 9y
o, PPy /) OB (156)
) C+pr 0y
5 weoeyy,B .
- S (157
and g
. Swege,, .
™, ped ™, I
™, = §2+'82Ey (158)
where, for this case, EyTMy satisfies the wave equation
92 F ™, ¢ )
¥ Ee ez p2s 2] 5™, _
T ( eyy)[g +B2 e, k2| E™ =0 (159)
and €¢,=¢,, =¢,,. The LSE and LSM modes are super-
posed to yield the following system of equations:
wp H T = BE, +¢E, (160)
(2B _p g
- weoenyTMy =pBH, +¢H, (162)
and
aiITEy
Oy eir _ pif

with E_, E,, H,, H, representing the transform of the total
field components. These relations are needed so as to
determine the boundary conditions which £ and H®
must satisfy. The wave equations to be solved in regions 1
and 2 of the geometry shown in Fig. 1(b) are given by

dZETMV B
el —(—‘L)RZETMy =0 (164)
dy2 €yy yon
ZFIYTlEy 2§ TE
7_RtHyl v = () (165)
where R?=¢?+ B2 —¢,k}, R2={>+B%>—¢, ki and
d2E™,
» 25 T™, _
e —RGE, =0 (166)
d2H™,
pe) 24 TE, _
———‘—1}7— —RGH, =0 (167)
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with R2={?+ B2 — k& The boundary conditions impose leads to the dispersion equation, which is obtained from

the following requirements.

Aty=0,B:
£TM,
H™ = —2— =0 for conductive wall.
¥ 3y
Aty=H and |x|>w/2:
7 TM i1 TE
f& 3Ey " TE, aHy i’ and € E™,
€, ay > T ay =y
must be continuous.
Aty=H, |x|<w/2:
~TM
AT, | S oL, ™
> \e ] dy
are continuous and J, = H,, J,=— H_, where J_ and J,

are the transforms of the current density distribution on
the microstrip. Solution to the aforementioned boundary-
value problem yields the following relations [51]:

Ui(§) = joe, [COth(ﬁ()Hp) + ‘/? Oth(RyHeq) Fi(%)
(168)
and
Jopolh($) = [Rycoth(RyHr)+ R, coth(R,H)] F({)
(169)

where the quantities U/({), F (), i=1,2, are defined by

(v=B/H-1)

Uy(§) = weo( BT — e, E™) = —¢J +B8J, (170)
U,($) '(3 i aﬁy{Ey) Bi.+¢7, (17)
== - =BJ +¢J,

2 dy 3y |,an
JE™, € 3ETM . .
F(§)=j[—i~—(—yl)—l = +{E, - BE,
' 3y €/ 9 |, g
(172)
and
B =—wp( A - H™) . =—BE, ~IE,.
(173)

A modified Wiener-Hopf method has been applied to
solve this system of equations for the dispersion properties
of a single microstrip conductor on sapphire [51]. The
equation

F (F jB)FJjE (FjB)=0 (174)
where
F(§)=F"(§)+e X F (=) (175)
and
) =F(§)—e " (=%) (176)

T JT,
xi (=/8) x3(=JB)
I, i, =0 (177)
x1 (JB) x> (JB)
where
O Sn
+ ; o §n1A (178)
=1+ E B -~ §n2 (179)
[0 Sn
T,=1- Eo HA,, (180)
and
o] tn '
T,=1- El 7 ~s“,,2B"' (181)

The F* are analytic on the upper half-plane Im ¢ > 0, and
(175) and (176) are valid for a symmetric current distribu-
tion on the microstrip. The solutions for F," are obtained
as

FI ({)-— }: 1- i g-jng An (182)
X1 | n=0 nl ]
and
. of, & 4 ]
FE ==|1- B 183
SO E e 09

where P and Q are constants and x; are defined as the
plus functions of x,({) where

coth( Ry Hv) N VEEyy

R, R

x1(§) = coth(R H,) (184)

y
and

X2(¢) =Rgcoth(RyHv)+ R,coth(R,H) (185)
and ¢, are the poles of x,; and x, in the lower half-plane.

In addition, A4, and B, are the solutions to the system of
equations

[=.0] Ky )
A =1+ ‘M_A’ =0,1, [
) mzzo C e An n 2 (186)
and
B =1+ —"—B,, =12,--- (187
Z §n2+§m2 " ( )
with
Res [x7 (§,0)]
Sn _____+ JEaw 188
X1 ( §n1) ( )
and
__Res[xd Q)] e (189)

" X2 ( {,,2)
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Fig. 22. Dispersion characteristics of microstrip with cover.

The characteristic impedance and the effective dielectric
constant have been computed by this method. An expres-
sion for Z,, based on the definition of wave impedance as
the ratio of the quasi-static voltage at the center of the strip
to the total longitudinal current, has been derived as
j__BF(=%)

2o wegF (0)x,(0)
where {, is the lowest order pole of x,({) given by
Sor = (ke — B2

The effective dielectric constant is computed by using
the definition €. = (8,/k,)* and it is shown in Fig. 22 as a
function of frequency up to 40 GHz. Computations using
the equivalent isotropic permittivities €., =1/, .,, and
€,¢q (as given by (40)) are also superimposed for compari-
son. When ¢, is used, an error of 4-10 percent or greater
occurs for f>5 GHz, while the linewidth-corrected em-
pirical expression for ¢, yields excellent agreement up to
about 25 GHz, while at 40 GHz it introduces an error of
about 2 percent [51].

b) Equivalent network method: An approach which is
straightforward and more general in that it can be readily
modified to yield solutions to a variety of integrated-circuit
structures on anisotropic substrates with or without cover
is the equivalent network technique [52]-[54]. The structure
of Fig. 1(h) is considered for which the electric- and
magnetic-field components transverse to the y-direction
are expressed in the case of microstrip lines as [54]

Eﬁ"}z 2 [ { VO, ) (8. x)
Ht(t) /=1"—® Il(l)(f»Y))A’xf/(faX)

—s8ow/2

Z,=— (190)

e /B2 d¢

(191)

where i=1,2,3 refers to the ith region of the multiple-
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Fig. 23. Equivalent transmission-line circuits for transverse section of
coupled strips.

layered anisotropic‘structure. The index /=1 corresponds
to LSM and /=2 to LSE modes. Furthermore

ﬁuw>=zgxwﬂ“ £ x) ==X fil5,x)

T
(192)
and K,= K /|K| with K ={% + 2.
Substitution of E/” and H, into Maxwell’s equations
yields the equivalent transmission-line relations

dZ_}I}(I)= — jKPzOI® (193)
and

5‘%‘_’ = — jkfy @y (194)
where

In this development, x{" and «{’ are the propagation
constants in the p-direction for TM,, and TE , waves, while
z{#} are the corresponding characteristic wave impedances
for these waves (see Fig. 23 for equivalent transmission-line
circuit). The (source) current density on the microstrip
conductor at y = 0 is given by

(%, p,2) = j(x)8(p)e (195)
where j.(x) may be written as

. 1 oo —jtx

() =5, [ i)eas. (196)

It is also possible to define i({)e ™* = ~2x[i;({) f,({, x)
+i,($) £(§, x)] so that j(x) can be formulated as

i) == [ [0 A0+ 1) £ )] .
(197)
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Vector multiplication of (197) with f,*({, x) and integra-
tion over the spectrum yields the current density transform

)=~ [ i) e %)

Proceeding with the derivation of the dispersion equation
for the propagation constant 8, the boundary conditions at
the layer interfaces and the grounded conductors may be
expressed in terms of voltages and currents, i.e.,

ViO(§, H) =0 (199)
V}(Z)(g’ - Hz) = V,a)(f, - Hz) (200)

VO(.00=V2(£.00  (201)
V@@, — Hy~ Hy)=0 (202)
IP(y=0%)=1P(y=0") =i, (203)

and
IP(y=-H)=1P(y=-H,). (204)

Decoupling of (193) and (194) results in the solutions

VO, »)=Z0, y)i (&) (205)
and
I8, y) =T, )i () (206)
where
. . (1) _H
Zl‘l’(f,y)=—jsm["l (y— Hy)] (207)
DO
jsin(xVH.
Z1(2)(§,)’)=]—(B:)*—l—)[D1sin(:c,(2>y)+cos(x,(2)(y)]
(208)
isin|k@(y+ H, + H,)| sin(xPH,
Z,(B)(f,y)=-J [1 ()’D 2 3)] : ( ia) 1)
0 s1n(:c, H3)
X [ Dy sin(kPH, ) —cos (P H, )] (209)
] @ Wy,
T, y) =2 COS["IDU Hy)] (210)
(¢}
@ sin (kOH
T2, y) = &_&D(:l*l)— [sin (k{2y )~ D, cos ()]
(211)
TO(¢ = y,(3)sin(K§1)H1) COS["§3)()’+H2+H3)]
)= D, in(x®
0 sm(ic, H3)
[cos(x{H,)— D, sin (kPH, )] (212)
with

Dy = yfY cos ( x}l)HI) + yPsin ( xfl)Hl) D,

and
cos(x(PH,) _ yPsin («PH,)
b - sin(kPH;)  y® cos(kPH,)
' sin(x®H, ) N v cos (k{PH, )
sin(kPH,)  yf® cos(kPH,)
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With the aid of these relations and (198), E(’ can be
derived in each region. The electric-field components in
region 1 can be written as

e P f°° d¢
277 o {2 +B2

S 206 )+ 820 5)] )
+$B[ 28 )= 285 2] ()]

=BG g

E®=—

(213)
and

e—j.BZ fw d§
277- — 0 §2 + [))2

[ B[z, y)- 205, »)]

X (x)+ [BPZO( )+ 020, 9)] 1 (x)]

e A gyt (214)
In order to derive the dispersion relations for the coupled
microstrip lines shown in Fig. 1(h), a solution is obtained
in terms of even- and odd-mode analysis.

i) Even modes (magnetic wall at x=0): For this
particular case, even-mode symmetry implies j, (x')=
= Jee(—Xx") and j,(x")= j,.(—x'), and therefore (213)
and (214) can be rewritten as

2e /B poo gy
™ A §*+ B2
. '/:/;2+ w[[g-zzl(l)(g, y)+Bzzl(2)(§’ y)] jXE(x/)

-sin (¢x) sin ($x’)
— j[$B(20(5, )= Z0(3. »)]
Joo(x") sin($x ) cos ({x') dx’

Ez(l) —

1)
E)Ee) -

(215)

and

D
Ez(e) -

ze*jﬁz /-00 d{
T Jy {2+ B2
LB - 706, )]

“Jre(x")cos(§x)sin(¢x’)

+[B2Z0(8, »)+2Z0(8, y)]

“Joo(x7) cos ($x) cos (¢x”) dx’. (216)
On the strip, ie., for s/2<x<s/2+w, EOD=ED =0,
and the Galerkin method is invoked to obtain solutions of

(215) and (216) for j  (x) and j,,(x). These current densi-
ties are expanded into the forms [54]

TZn( 2(x"—s) )2

w

jEE=

Jelx) == jéoa,,xevz,,( =) oy

(217)

N
jze(‘x,) = Z anze
n=20

and
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where T, (x) and U,(x) represent the Chebyshev polynomi-
als of the first and second kind, respectively. The particular
choice of this representation for j, (x’) and j_(x') is
dictated by the edge conditions for the current density
components at x =5/2 and x =s5/2+ w. Consideration of
the fact that EX = E®D =0 on the microstrip and substitu-
tion of (217) and (218) into (215) and (216) yields the
following system of equations to be solved for the prop-
agation constant B, namely:

N N
Z amnean2e+ Z aneanxe=0’
n=20 n+1
m=0,1,2,3,--- N (219)
and
N N
Z Ymne nze Z mne nxe O’
n=0 =
m=1,2,3,---, N (220)
where
m+nf{ W 202
@ ne=(_1) (7) (;)
N §2 - Bz [822(5,0)+ 22 (,0)]
ane= (_ )m+nnw(2/ﬂ)
d
B g (200 - 20 .0)
and
Ymne =V%ane (223)
8,.,.= (—1)m+n4mn(2/7r)
vl w% zi(,0)+ & o “2(s, 0)]

WAL

Setting the determinant of the system of equations (219)
and (220) equal to zero yields the dispersion equation for
the even-mode propagation constant.

ii) Odd modes (electric wall at x = 0): For odd modes,
JeolX) = joo(— %), while j,,(x')=— j,,(—x) and the
electric-field components in region 1 are now given by

(224)

1)
E)Eo)__

2e—jBZ 0 d‘{‘
T '[0 §2+B2

ST )+ B2 )]

Je(x")cos (§x) cos ($x) + KB[ Z (8, »)— Z§0(%, »)]
-J.(x") cos (§x) sin (§x') ] dx (225)
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and

2e7 B p0 gi
a f §2+BZ

LBz )0 )]

s/

1)
Ez(o)_ -

J(x7)sin($x) sin (§x')
= KBLZ{P(, ») - 2%, )]
<Je(x")sin(§x) cos (¢x7)] dx’.

In applying the Galerkin procedure for odd modes, the
following expansions have been adopted for the current
density components j, (x) and j, (x), namely [54]:

(226)

2(x'—s)
)= Tzn_l((x - )))2
1—(2X25)

and

N
- ijo(x) = Z anxoUZnAI

n=1 w

(Z(x’—s) )

Adaptation of the above current distributions and the fact
that EQ=E® =0 on the strip yields, in this case, the
system of equations

N
Z mno nzo Z anoanxo = 0’
= n=1

m=1,2,3,---, N (227)
and
N N
Z .Ymnoanzo+ E Smnoanxo=0’
n=1 n=1
m=1,2,3,---, N (228)

whose solution yields the dispersive properties of the prop-
agation constant for the odd mode. For this particular case

o= (D" (5) 2[5

ar §2+BZ
-[B2Z(5,0)+¢°Z§°(2,0)]
'J2n~1(§w)‘]2m l(g‘;})

pem 07 3o 5

(229)

[B(z0(3,0)- z$0(2,0))]

(5

2m—1)
(2n—-1)

(230)

ano

Ymno
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Fig. 24. Dispersion characteristics of single microstrip on sapphire.

and
8 m,=(—1)m+n(2n—1)(2m—1)(%)/0°°§21j_§32
[Z“)(f 0+5 2 z§1>(§ 0)]
'J2n~1(§2w).fzm 1(§2W). (231)

Numerical computations based on this analysis have
been performed for various microstrip geometries. The
results show that even for N =2, sufficient convergence
accuracy is obtained [54]. Comparison of this technique
with the Wiener—Hopf method indicates excellent agree-
ment for the single microstrip with cover case in the
computations for €. when w/H < 4.0. The discrepancy
between the two techniques becomes larger for increasing
w/H, as Fig. 24 indicates. Furthermore, this disagreement,
as Fig. 25 shows, is even more prominent when the disper-
sive behavior of Z; is compared between the two methods.
This discrepancy is also due to the fact that the characteris-
tic impedance in this case is defined in terms of the ratio

P,./I*?, where P,, is the average power flowing in
the 2-direction along the microstrip as computed by the
Poynting vector, and I is the total current on the micro-
strip. This definition of Z; accounts for dispersion more
accurately than the definition used in {52], which is based
on the ratio of the quasi-static voltage at the center of the
strip to the total longitudinal strip current.

2) Discrete Fourier Spectrum — Structures with a Rectan-
gular Shield: When a waveguiding structure is enclosed
entirely within a rectangular shield, the discrete Fourier
spectrum may be used to determine the dispersion proper-
ties of the distributed circuit [55], [56]. For coupled lines,
the method requires the following Fourier transform defi-
nitions.

Even Modes (Magnetic Wall at x = 0):

™ — ["E™ cos (k,x) dx (232)
0

BT = [ sin (k,x) d (233)
0

where k,=(2n—-1)/2aw.
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Fig. 25. Characteristic impedance of single microstrip on sapphire.

0dd Modes (Electric Wall at x = 0):

EM = ["EM sin(k,x) dx (234)
0

AT =[BT cos (k,x) dx (235)
[¢]

where k, = nn/a.
These representations yield for the LSE and LSM modes
the following equations.

LSE Modes:
21, _ @B p
xy_Bz_,_kz y (236)
TE, _ -]wlu‘okn 7 TE 237
7 TE, _ kn ai])’m
B =F s (238)
and
77 TE
}"ITEy — ]B 3Hy (239)
z B*+k* dy
where H ™ satisfies the wave equation with {2 = k2.
LSM Modes:
Sy
. kn( 3 ) E™
S T (240)
ol &2
(%) g
EM=— —— 2 (241)
‘ B +k> 9y
™ wege, B -
x 0= B2+ k2 g (242)
. Jwege k,
A™, = 4 FE :2 SE™ (243)

and E™ satisfies the wave equation with {*= k2. The

lower (upper) signs refer to even (odd) modes, respectively.
The current distribution Fourier components J, and J, can
be obtained by inverting the system of equations [56]

E, G, G iJ
]~ 11 12 || Mx (2 4 4)
E, Gy Gzz Jz
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which is valid on the plane of the strips. The matrix
components G,,, are elements of the Green’s dyadic func-
tion for the multiple-layered geometry shown in Fig. 1(1).
The boundary-value problem solution yields for G, the
following result:

+ kok,B

Gn = Gzz = —zwe— [Fl(kn’B)+ FZ(kn’ B)]
n 0
(245)
- k - .
G, = 2 . [k3F1(kn,.3)_132F2(km,8)] (246)
‘aneo
o k .
Gy =——[B?F(k,,B)-k2F(k,,B)]  (247)
'anEO
where
Fi(ky, B) = [1/fa+(a®Tafa +1) /(S + 1)
’ (248)
F2(kn’ B) = [1/gy1 + (gylgy3 + a§/2)2)/
(«@(g,+8,}] (249)
Y2=B2+ K (250)
o) = (/Ko=) (e0)  (25D)
afP=\(y,/ko)’— € (252)
f.. = tanh(koa®n,) /o (253)
and
g,, = & tanh (eMkalOh, ). (254)

The subscript/superscript i refers to the ith anisotropic
layer in the structure.

For the slotline or coplanar waveguide problem, duality
may be invoked to show that the conductor currents are
related to the slot-field components through the relation

[56]

[ Js x~]= [?11 ?12 |:J~z (255)
- Jz Q21 Q22 Ex
where
Qu = G~22/A le == G12/A QZl == C~;21/A

(256)

and
A= Guézz = GGy (257)

The microstrip current density or slot-field distribution
may be expanded in terms of a set of known basis func-
tions { f,(x)} and {g,(x)} in the form

_Jz(x) _ ul c X

Ex(x) }_kgl kfk( ) (258)
and

() _ & .
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where f,(x) and g,(x) are defined only on the microstrip
line or on the slot. The basis functions are chosen so that
the edge effect is properly included, ie., f,(x)=[(x—
s+ w)/w/21"! and g (x) = sin[km(x ~ 5/2)/w],
[56]. The microstrip current density or slot-field distribu-
tion as represented by (258) and (259) are Fourier trans-
formed and the result is substituted in (244) or (255). The
Galerkin procedure is applied to yield a system of (N+
M)X(N + M) eigenequations for the unknown constants
¢, and d,. On the microstrip or the slot, this is a homoge-
neous system of equations whose determinant is set equal
to zero to yield the dispersive behavior of the propagation
constant 8. The elements of the determinaiital equation are
given by

X0 T (k) Gu(B, k), (k)
Xr(z}’Z) _ ad 'izr(kl)él2(ﬁ’k1)'izq(kl) (260)
XS’” =1 jxs(kl)GZI(B’kl)jxp(kl)
Xs(s’z) jxs(kl)GZZ(B’kl)qu(kl)

where p=s=1to M and r=¢g=1to N.

This technique has been tested against already discussed
quasi-static as well as dynamic solutions. In the quasi-static
case, the results of the microstrip couplers with a super-
strate layer shown in Table VII have been checked. For
each case, a difference of less than 0.03 percent was found
for N=2, M=10, a=20, k,=10"% and /=1000. The
dispersion curves for €{&°} as determined by the TLM
method have also been verified. In using the discrete
Fourier techiique, a convergence accuracy better than 0.5
percent has been enforccd. This convergence requirement
is satisfied when N=M =4 and /=300 for the results
shown in Fig. 26, and it has been determined that for the
mesh size chosen the TLM computations are consistently °
lower by 3 percent for €{% and 1.5 percent for €{2. A
particular case of interest is shown in Fig. 27 where as
observed equalization of even- and odd-mode phase veloci-
ties is obtained at those normalized frequencies where
e =¢2. In order to emphasize the versatility of this
technique, the dispersive properties of coupled inverted
microstrip lines are demonstrated in Fig. 28, while Fig. 29
shows the variation of ¢ for a shielded slotline.

The dispersion curves of Fig. 28 highlight the frequency
dependence of the error incurred when anisotropy is not
inctuded in the computation. The error becomes larger
with increasing frequency and it is of the order of 17
percent when, e.g., normalized k,=0.70. The results
calculated by this method have been found to be in excel-
lent agreement with those obtained by the equivalent net-
work approach for microstrip with cover and for coupled
slots without cover. In addition to the excellent accuracy,
this approach provides a generalized algorithm which can
resolve all the waveguiding structures shown in Fig, 1 [56].
For this reason, it is perhaps the most useful of the tools
presented in this paper for the analysis of the dispersive
properties of a variety of integrated-circuit waveguiding
structures.
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Fig. 27. Duspersive behavior of ¢ for coupled microstrip in a rectangular
shield.

C. The Method of Lines

This method solves directly the wave equation and asso-
ciated boundary conditions for waveguiding structures in a
rectangular shield. It is essentially a simplified version of
the finite differences method, it is more accurate, and
requires less computation time. The system of partial dif-
ferential equations which describes the nature of the propa-
gating modes is discretized in all directions, except the
direction which is transverse to the electrical inhomogene-
ities of the structure under consideration. The procedure
requires, e.g., that the %-dimension of the circuit of Fig.
1(c) be divided into N subsections by defining x, = x_+
nAx with n=1,2,---, N (see Fig. 30). This discretization
forces the replacement of derivatives in the %-direction by
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finite differences, and it yields a system of N-coupled
ordinary differential equations. Upon the introduction of
the proper transformed potentials, this system is reduced to
N-uncoupled ordinary second-order differential equations
which can be solved easily. The steps leading to this latter
system of differential equations may be chosen carefully so
as to account correctly for the boundary conditions at the
side walls of the enclosure, as well as for the edge condition
at the waveguiding circuit edges [93]-[95].

This technique has been adopted to obtain the dlsperswe
properties of a microstrip transmission line on a gyrotropic
substrate [10]. For the case of a dc magnetizing field
H = $H,, the permeability tensor given by (5) is used with

nu‘xx nu’Onu’P p‘xz j’J’Op‘2’ nu‘yyzf"’07 nu‘zx=p‘>;z’ and :U'zz=
Pol = MxxWhCI'C
M H,
=14 0 (261)
(vHy) - @
and
wyM,
o= (262)
(YHo) —

In these equations, y is the gyromagnetic ratio and M,
represents the saturation magnetization [8]. Maxwell’s
equations are solved in this gyrotropic medium in terms of
the electric- and magnetic-field components in the direc-
tion of H,, i.e., in terms of E, and H, [10]. A coupled
system of second order partial d1fferent1al equations results
for this case in the form

E, + E, B’E, + p klE, =k, ( )aH
ax? | ay> y T he ) 9y
(263)
and
2 2
J°H, LaH. R+ K2H =_’_‘z(!L2)aE.v
dx? .‘Lo ay? d d n dy
(264)
where
2
n= (Mo/‘z)l/2 "#1_%12' and k? = we,p,.

A discretization procedure is adopted in the %-direction
[10] as suggested in [93]-[95] and [10] which reduces this
pair of second-order coupled partial differential equations
to a system of second-order ordinary differential equatlons
in the form

d? 1 5 0
(;J’_“"Lekz—ﬁz) (Ax)2 )_y=71ke“-§_f_[y
(265)
and
1 d? 1
— L k-pr|- N]|H
(ul dy? B) (Ax)2[ ])—y

L ()2
py ) 0y~
(266)
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where E, and H, are column vectors with elements
E,H, (n =1,2,3,---, M). In order to arrive at this
system of coupled ordinary second-order differential equa-
tions, the following boundary conditions have been in-
voked.

On Electric Wall:

3HV 1U‘2 aH )
E,=E,=0 and iy (9y . (267)
On Magnetic Wall:
H,=H,=0 and N e,k H,.  (268)

In (265) and (266), [A] is a diagonal matrix and its ele-
ments represent the eigenvalues of the discretization matrix
[10]. Equations (265) and (266) may be decoupled in the
spectral domain to yield a system of fourth-order ordinary
differential equations in the form

[
(269)

where G represents either E,orH, In addition, ¢* =

1 .,
ki-p2- N, and &=pki-pP- N
T (ax)°
This fourth-order differential equation may be solved easily
in terms of hyperbolic sines and cosines to yield the
solutions

d2
2 dy?

+k2“2 G,=0

r
;)1_2+[£]

E, = Acoshk,,y+ A,,coshk,,,y (270)

and
H,, =B, sinhk,,y+ B,,sinhk , y (2n)

with

egh

R e

and

2
x4 g (273)
1

1
The coefficients B,, and B,, are obtained in terms of 4,
and A4,, by substituting (270) and (271). A similar ap-
proach is followed in the air region, and subsequently the
boundary conditions are applied at the interface to yield
after some manipulations the dispersion equation in 8/k.
This procedure as adopted in [10] yields the dispersion
diagrams shown in Fig. 31 for H; /M =2.0 and 8.1 Com-
parison with the results obtained by the mode-matching
technique [9] indicates excellent agreement for H,/M =
8.1, but a serious discrepancy exists between the two
methods for increasing frequency when H, /M, = 2.0. This
disagreement has not been clarified as yet, but previcus
results on isotropic substrates have in general vetified the
accuracy of the method of lines. The discussion in this
section simply indicates that this is a useful technique
which can be extended to analyze the properties of in-
tegrated-circuit structures on anisotropic substrates.
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IV. CoNCLUSIONS

A collection of new results has been presented in this
paper aiming at the clarification of anisotropic substrate
effects on the propagation properties of various
integrated-circuit structures. In addition, the bulk of this
paper has been devoted to the presentation of analytical
and numerical methods which are useful in the accurate
modeling of the effective dielectric constant and character-
istic impedance of various structures such as microstrip,
slotline, and coplanar waveguide on anisotropic substrates.

The various quasi-static and dynamic analytical methods
summarized in this paper have shown that when anisotropy
is not accounted for in the computation of the waveguiding
structure properties, an error is incurred which increases
with decreasing linewidth and/or increasing frequency.
The concept of anisotropy ratio (AR) has been introduced,
which may be used as an indication of dimensional toler-
ance sensitivity for coupled lines with cover, where the
cover is used for achieving equalization of even- and odd-
mode phase velocities. It has been found that, when AR >1,
the equalization of phase velocities is less sensitive to small
variations in the cover height to substrate thickness ratio
compared to when AR <1. Also, it has been seen that by
introducing an equivalent relative dielectric constant and
an equivalent substrate thickness, the anisotropic layer may
be replaced by an equivalent isotropic substrate for micro-
strip without cover. In this case, computations are sim-
plified since existing design methods for microstrip without
cover may be used provided €, and H are replaced by e,

and H,,, respectively.
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The quasi-static methods summarized in this paper prove
to be of practical use when the largest (and transverse to
the direction of propagation) characteristic dimension of
the circuit structure under consideration is small by com-
parison to the source wavelength. Among the various
techniques presented, the method of moments in conjunc-
tion with the pertinent Green’s function provides a
straightforward solution to the integral equation for the
charge density of single or coupled lines. This solution may
be obtained to within desired convergence accuracy even
for open structures since the boundary condition at infinity
is included in the Green’s function representation. On the
other hand, the finite differences technique suffers from
convergence sensitivity problems, especially for open struc-
tures, while the variational method provides results only to
within an upper or lower bound from the true answer. The
method of moments is considered to be the superior of all
the other quasi-static techniques discussed due to its versa-
tility and excellent accuracy.

The dispersive properties of various integrated-circuit
structures have also been addressed in this paper. It has
been found that the Fourier series method is the most
generalized dispersion modeling procedure since it yields
solutions to essentially all the structures of practical inter-
est. It provides, in addition, results to within desired con-
vergence accuracy.

Similarly, the equivalent network method also offers a
generalized approach since it can deal with most of the
integrated-circuit geometries of practical interest with ex-
cellent accuracy. The modified Wiener—Hopf procedure,
on the other hand, is a mathematically elegant technique,
but it has been applied only to microstrip with cover on an
anisotropic substrate and it has not been adopted to tackle
the question of coupled microstrip lines and that of more
general integrated-circuit structures.

The aforementioned dispersive models suffer from a
major disadvantage in that they fail to characterize the
dispersive properties of circuit discontinuities and structure
transitions. The transmission-line matrix and the method
of lines procedures, on the other hand, are adoptable to
modeling effectively the dispersive properties of a wave-
guiding circuit in a rectangular waveguide as well as certain
circuit discontinuities. As stated previously, the TLM
technique has been applied to the geometry of single and
coupled microstrip on sapphire in a rectangular waveguide
for wide microstrip lines. The graphs shown in Fig. 21 for
€% 2 have been found to be in error by 1.5 and 3 percent,
respectively, when compared to the corresponding cases
computed by the Fourier series method when the latter is
applied with a convergence accuracy of 0.5 percent. This
error observation, coupled with the fact that the computa-
tions in [44] refer only to wide lines (w/H >1), suggests
that there is no sufficient evidence for the degree of accu-
racy provided by this method; especially for lines with
w/H <1 on anisotropic substrates. In summary, the inher-
ent disadvantages of this method are: a) the need of a
priori knowledge or a very good initial guess of the domi-
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nant field distribution; b) the dependence of the method
on the chosen mesh size and large number of iterations
necessary to achieve desired convergence accuracy, factors
which may lead to excessive computer run time and mem-
ory storage requirements; c) the method is effective for
modeling dispersion in closed structures only; d) the
method does not yield readily an equivalent circuit for the
discontinuities of interest; e) there is no theoretical or
experimental verification for the dispersive models derived
by this method for the step and gap discontinuities pre-
sented in this paper. The method of lines is also an
effective method to study the dispersive properties of dis-
tributed circuits in a rectangular waveguide with very good
accuracy. Its major advantage is the simplicity of the
resulting computer algorithm which allows efficient circuit
parameter computation on a personal computer. The
method has also been used to model discontinuities such as
a periodic meander microstrip line and a periodically slotted
microstrip. In addition, it has been used effectively to
model a slotline short circuit. The versatility of this method
in resolving the dispersive properties of step, gap, and
other nonperiodic types of useful discontinuities has yet to
be demonstrated.

Neither the TLM technique nor the method of lines are
adequately general to provide solutions for the dispersion
properties for the majority of the structures in Fig. 1. In
fact, these techniques are ineffective as far as open struc-
tures are concerned and, in particular, in the modeling of
discontinuities associated with open structures.

A novel approach was developed recently which resolves
the dispersion properties of microstrip transmission lines,
and it provides very accurate frequency-dependent equiv-
alent circuits for microstrip discontinuities such as micro-
strip gap, open-circuited microstrip, etc.,, on isotropic
substrates [15]-[99]. The method accounts for line and
discontinuity radiation loss, conductor thickness, as well as
all substrate effects, including the excitation of substrate
surface waves. The model involves derivation of the stand-
ing-wave pattern for the current density along the circuit
from which the line dispersion properties and discontinuity
frequency-dependent equivalent circuits are derived [96].
The current density standing-wave pattern is obtained by
solving Pocklington’s integral equation by the method of
moments. The radiation aspects of the problem, as well as
the substrate effects, are taken into account by the Green’s
function which is obtained by solving the boundary-value
problem of radiation by an infinitesimally short electric
dipole printed on a substrate [96]. This approach can be
extended to all the microstrip geometries of Fig. 1, where
the Green’s function must be derived for anisotropic sub-
strates. A dual direction may be followed for the geome-
tries which involve slotlines.
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